

Polarization

A.C. NORMAN

Radley College

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Polaroid investigations

Today we shall

- 1 fully understand polarization of trasverse waves.
- 2 know some applications of polarization.
- **3** practise using the concepts on questions.
- 4 (possibly) discover a hidden gift...

Textbook p. 119 [APFY]

Specification Requirement

Learners should be able to demonstrate and apply their knowledge and understanding of:

the term polarisation

[Eduqas A Level Physics Specification, 2009/10 onwards]

Electomagnetic wave

When a ray of light is incident on two polarizers with their polarization axes perpendicular, no light is transmitted. If a third polarizer is inserted between these two with its polarization axis at 45° to that of the other two, does any light get through to point P?

- (a) yes
- (b) no

When a third polarizer is inserted at 45° between two orthogonal polarizers, some light is transmitted. If, instead of a single polarizer at 45°, we insert a large number N of polarizers, each time rotating the axis of polarization over an angle $90^{\circ}/N$,

- (a) no light,
- (b) less light,
- (c) the same amount of light,
- (d) more light gets through.

LCDs

Brewster Reflexion

Quick questions

- 1 Light which is vibrating in a single plane is referred to as ... light. electromagnetic transverse unpolarized polarized
- **2** Light which is vibrating in a variety of planes is referred to as ... light.
 - electromagnetic transverse unpolarized polarized
- **3** Light usually vibrates in multiple vibrational planes. It can be transformed into light vibrating in a single plane of vibration. The process of doing this is known as
 - translation interference polarization refraction

More Questions

- **4** Light is passed through a Polaroid filter whose transmission axis is aligned horizontally. This will have the effect of
 - (a) making the light one-half as intense and aligning the vibrations into a single plane.
 - (b) aligning the vibrations into a single plane without any effect on its intensity.
 - (c) merely making the light one-half as intense; the vibrations would be in every direction.
 - (d) ... nonsense! This will have no effect on the light itself; only the filter would be affected.

More questions

- **5** Light is passed through a Polaroid filter whose transmission axis is aligned horizontally. It then passes through a second filter whose transmission axis is aligned vertically. After passing through both filters, the light will be
 - (a) polarized
 - (b) unpolarized
 - (c) entirely blocked
 - (d) returned to its original state

Sunglasses

8 Consider the three pairs of sunglasses shown below. Which pair of glasses is capable of eliminating the glare from a road surface? (The transmission axes are shown by the straight lines.)

In between two crossed polarizers, which are oriented 90° from each other, you place a third polarizer. The one in the middle is oriented at a 45° angle with respect to the other two. From an unpolarized light source of intensity I_0 , what intensity of light makes it through the 3 polarizers?

- (a) l_0
- (b) $\frac{h_0}{2}$.
- (c) $\frac{l_0}{4}$.
- (d) $\frac{l_0}{8}$.
- (e) 0.

