Refraction of light rays

A.C. Norman

Bishop Heber High School

© (**) S (**) Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Today's main work

1 Answering questions from 'Refraction 3' sheet

Refraction III A.C. Nonnan

.

- Find the angle of refraction when...
- (a) ...a my of light in travelling from six !
 (b) ...a my of light in travelling from plan
- Σ . A my of light in incident on the nucleo of a glass block. The angle of incidence is W^{\pm} . Calculate the angle of selenction.
- 3. A say of light is involved on a gloss water boundary. The angle of involver is 20°. Calculate the angle of refunction.
- A say of light is involves on a list restine of an ier block, at an angle of invidence of 24°. If the relevative index of ier is 1.31, calculate
 (a) the nucle of relevation of the zero.
- (a) the angle of refusetion of the up;
 (b) the angle identify which the up is deviated upon ratering the block.
 5. Calculate the angle of refusation and the angle through which the up is deviated when a light
- 6. "A nerver from a white light strikes one face of an equilatered gloss prion as shown in the diameter. The early of incidence in 10°.

The relocate in the white light relevant by different assumes. If the relocative is able of red light is $\Omega_{\rm c}$, distributed by the $\Omega_{\rm c}$ distributed the angular symptoms of the end are bright ways. In the experience produced by the prime.

1. "Whe light instants can the resultion of $\alpha_{\rm c}$ gives no wairs, the Birentier angle $\Omega_{\rm c}$ in the angle of neutrons for which the reflected as μ is completely place potantice Bartisonic in the nation of $\Omega_{\rm c}$ in the superior of the state of the superior $\Omega_{\rm c}$ in $\Omega_{\rm c}$ is the superior $\Omega_{\rm c}$ in $\Omega_{\rm c}$ in the superior $\Omega_{\rm c}$ in $\Omega_{\rm c}$ in the superior $\Omega_{\rm c}$ in $\Omega_{\rm c}$ (like it Excendent that the superior $\Omega_{\rm c}$ in $\Omega_{\rm c}$ in the superior $\Omega_{\rm c}$ in $\Omega_{\rm c}$ in

(c) (1) (S) (a) Except where of the wind cross, this work is been adjusted in the property of the property of

Lesson Objectives

- 1 To be able to answer refraction questions.
- 2 To understand why total internal reflexion occurs.

Textbook pp. 188–192

REMINDER: Office hours are week 2 Tuesdays 3.45–5.0 p.m. in room 19.

Next office hours: Tuesday 23 February 2012

Specification Requirement

Refraction at a plane surface

Refractive index of a substance s, $n = \frac{c}{c_s}$

Candidates are not expected to recall methods for determining refractive indices.

Law of refraction for a boundary between two different substances of refractive indices n_1 and n_2 in the form

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Total internal reflection including calculations of the critical angle at a boundary between a substance of refractive index n_1 and a substance of lesser refractive index n_2 or air;

$$\sin\theta_c = \frac{n_2}{n_1}$$

Simple treatment of fibre optics including function of the cladding with lower refractive index around central core limited to step index only; application to communications.

[AQA GCE AS and A Level Specification Physics A, 2009/10 onwards]

Total internal reflexion

Calculating critical angle

e.g. For light travelling from glass ($n_1 = 1.52$) into air ($n_2 = 1$), we can find θ_c using Snell's law and the fact that θ_c is the angle of incidence for which the angle of refraction is 90° :

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\sin \theta_1 = \frac{n_2 \sin \theta_2}{n_1}$$

$$\sin \theta_c = \frac{1 \times \sin(90^\circ)}{1.52}$$

$$= 41.1^\circ.$$