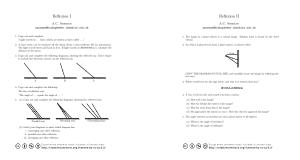
Refraction of light rays

A.C. Norman

Bishop Heber High School



© (**) S (**) Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Starter for 10...

1 I'll swap you reflexion GCSE revision sheets for a reading memo & your homework!

2 BPhO AS Challenge 16 March 2012, training sessions 7 February & 13 March

Lesson Objectives

- 1 To understand the refraction notes.
- 2 To be able to answer refraction questions.
- 3 (if there's time) to discuss the homework.

Textbook pp. 188–192

REMINDER: Office hours are week 2 Tuesdays 3.45–5.0 p.m. in room 19.

Next office hours: Tuesday 23 February 2012

Specification Requirement

Refraction at a plane surface

Refractive index of a substance s, $n = \frac{c}{c_s}$

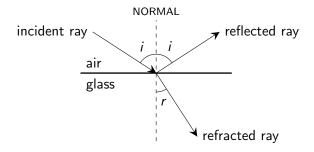
Candidates are not expected to recall methods for determining refractive indices.

Law of refraction for a boundary between two different substances of refractive indices n_1 and n_2 in the form

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Total internal reflection including calculations of the critical angle at a boundary between a substance of refractive index n_1 and a substance of lesser refractive index n_2 or air;

$$\sin\theta_c = \frac{n_2}{n_1}$$


Simple treatment of fibre optics including function of the cladding with lower refractive index around central core limited to step index only; application to communications.

[AQA GCE AS and A Level Specification Physics A, 2009/10 onwards]

Reading memos...

Refraction

