Polarization of transverse waves

A.C. NORMAN

Bishop Heber High School

© (**) Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Lesson Objectives

- 1 To fully understand polarization of trasverse waves.
- 2 To know some applications of polarization.
- **3** To practise using the concepts on questions.
- 4 (Possibly) to discover a hidden gift...

Textbook p. 175

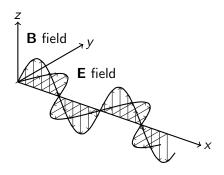
REMINDER: Office hours are week 2 Tuesdays 3.45–5.0 p.m. in room 19.

Next office hours: Tuesday 31 January 2012

Specification Requirement

Longitudinal and transverse waves

Polarisation as evidence for the nature of transverse waves; applications e.g. Polaroid sunglasses, aerial alignment for transmitter and receiver.

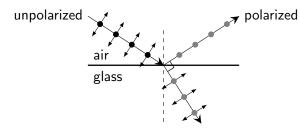

[AQA GCE AS and A Level Specification Physics A, 2009/10 onwards]

Homework

- 1 Reading memo for next time (NB Friday will be a practical, so next time is next Thursday)
- 2 Investigation on Polarization (E:HEBER)


Reading memos...

Electomagnetic wave



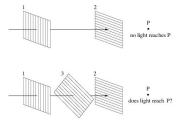
Polaroid investigations

Brewster Reflexion

E vibrations in/out

- 1 Light which is vibrating in a single plane is referred to as . . . light.
- electromagnetic transverse unpolarized polarized
- 2 Light which is vibrating in a variety of planes is referred to as ... light.
 - electromagnetic transverse unpolarized polarized
- 3 Light usually vibrates in multiple vibrational planes. It can be transformed into light vibrating in a single plane of vibration.

 The process of doing this is known as
 - translation interference polarization refraction


- 4 Light is passed through a Polaroid filter whose transmission axis is aligned horizontally. This will have the effect of
 - (a) making the light one-half as intense and aligning the vibrations into a single plane.
 - (b) aligning the vibrations into a single plane without any effect on its intensity.
 - (c) merely making the light one-half as intense; the vibrations would be in every direction.
 - (d) ... nonsense! This will have no effect on the light itself; only the filter would be affected.

More questions

Copyright © The Physics Classroom http://www.physicsclassroom.com, used with permission

- 5 Light is passed through a Polaroid filter whose transmission axis is aligned horizontally. It then passes through a second filter whose transmission axis is aligned vertically. After passing through both filters, the light will be . . .
 - (a) polarized
 - (b) unpolarized
 - (c) entirely blocked
 - (d) returned to its original state

6 When a ray of light is incident on two polarizers with their polarization axes perpendicular, no light is transmitted. If a third polarizer is inserted between these two with its polarization axis at 45° to that of the other two, does any light get through to point P?

- (a) yes
- (b) no

- 7 When a third polarizer is inserted at 45° between two orthogonal polarizers, some light is transmitted. If, instead of a single polarizer at 45° , we insert a large number N of polarizers, each time rotating the axis of polarization over an angle $90^{\circ}/N$,
 - (a) no light
 - (b) less light
 - (c) the same amount of light
 - (d) more light

gets through.

8 Consider the three pairs of sunglasses shown below. Which pair of glasses is capable of eliminating the glare from a road surface? (The transmission axes are shown by the straight lines.)

