On the gas laws

A.C. NORMAN ACN.Norman@radley.org.uk

Questions 2–4 and 6–9 are taken from *Thermal Physics* by C.J. Adkins.

Warm-up problems

- 1. What kind of motion is *Brownian motion* and how does it provide evidence for the existence of atoms?
- 2. Give an account of the essential features of the kinetic features of the kinetic theory model of an ideal gas.
- 3. Why do the molecules of a gas not all move at the same speed? Explain how the probabilities of finding molecules with different speeds varies as temperature varies. You may wish to sketch a graph.

Regular problems

- 4. (a) The density of air at 0° C and 10^{5} Pa is 1.29 kg m^{-3} . What is the molar mass?
 - (b) Approximately how many molecules are there in one litre of air?
- 5. Explain the term root mean square and give an example of its use in physics.
- 6. For nitrogen, one mole occupies $2.24\times10^{-2}\,\mathrm{m}^3$ at $0\,^{\circ}\mathrm{C}$ and $10^{5}\,\mathrm{Pa}$. The relative molar mass is 28. What are
 - (a) the mass of one molecule,
 - (b) the mass of one mole,
 - (c) the number of molecules in $10^3 \,\mathrm{mm}^3$ at this temperature and pressure,
 - (d) the root mean square speed at this temperature?
- 7. Show that

thermodynamic temperature ∝ molecular kinetic energy

8. Given that $4 \,\mathrm{kg}$ of helium at $0\,^{\circ}\mathrm{C}$ and $10^{5} \,\mathrm{Pa}$ occupy $22.4 \,\mathrm{m}^{3}$, calculate the root mean square speed of helium atoms at $15\,^{\circ}\mathrm{C}$.

Extension problems

- 9. Molecules of oxygen $(M_r = 32)$ escape from the surface of the moon where the surface temperature is 50 °C. [Radius of moon = 1738 km. Acceleration of free fall at moon's surface = $1.62 \,\mathrm{m\,s^{-1}}$]
 - (a) What is their surface temperature?
 - (b) What is their mean kinetic energy?
 - (c) What is their potential energy at the moon's surface?
 - (d) Will their speed be sufficient for them to escape from the gravitational attraction of the moon?
 - (e) Why does the moon have no atmosphere?

