

The Stefan-Boltzmann Law

A.C. NORMAN

Radley College

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Quantum mechanics (\hbar) explains surface temperatures of planets & stars

https://xkcd.com/54/

Today we shall

- 1 see how to derive the Stefan-Boltzmann law.
- 2 know some applications of the law.
- **3** be able to use the law in calculations and to answer questions.

Textbook p. 119 [APFY]

Specification Requirement

7 Using radiation to investigate stars

- (b) the idea that bodies which absorb all incident radiation are known as black bodies and that stars are very good approximations to black bodies
- (d) ... Stefan's law and the inverse square law to investigate the properties of stars luminosity, size, temperature and distance [NB stellar brightness in magnitudes will not be required]

[Eduqas A Level Physics Specification, 2009/10 onwards]

Start with relevant quantities

F	MT^{-3}	energy flux
k_BT	ML^2T^{-2}	thermal energy
\hbar	ML^2T^{-1}	quantum
С	LT^{-1}	speed of light

Now we could use algebra to make $F \times (k_B T)^x \hbar^y c^z$ dimensionless (this would be messy).

More physically meaningful to make $c\equiv 1$ and $\hbar\equiv 1$

- ► Choosing $c \equiv 1$ expresses unity of space and time (Einstein: SR), and makes length and time have the same units.
- ► Choosing $c \equiv 1$ also expresses equivalence of mass and energy (Einstein: SR), and makes mass and energy have the same units.
- ▶ Choosing $\hbar \equiv 1$ expresses the fundamental insight of quantum physics: that energy is (angular) frequency:

$$E=\hbar\omega$$
.

When $\hbar \equiv 1$, then E is ω .

These choices of $c\equiv 1$ and $\hbar\equiv 1$ also affect dimensions

► Choosing $c \equiv 1$ makes dimensions of length and time equivalent:

$$c \equiv 1$$
 implies $L \equiv T$.

Thus, in our table, we can replace T with L.

• Choosing $\hbar \equiv 1$ contributes the dimensional equation

$$\underline{\mathrm{ML}^{2}\mathrm{T}^{-2}} \equiv \underline{\mathrm{T}^{-1}}.$$

This looks like a mess, but replacing T with L (from $c \equiv 1$) simplifies it:

These choices of $c\equiv 1$ and $\hbar\equiv 1$ also affect dimensions

Length and time are equivalent dimensions.

Mass and inverse length are equivalent dimensions.

F	energy flux
k_BT	thermal energy
\hbar	quantum
С	speed of light

Energy flux, F

F	M^4	energy flux
k_BT		thermal energy
\hbar		quantum
С		speed of light

- In the usual system, dimensions were MT⁻³.
- ► Now, T⁻³ is equivalent to M³.
- ► The dimensions of *F* become M⁴.

Thermal energy, k_BT

F	M^4	energy flux
k_BT	Μ	thermal energy
\hbar		quantum
С		speed of light

- ► In the usual system, dimensions were ML²T⁻².
- ► Now, T⁻² is equivalent to M².
- ▶ Dimensions of k_BT become M (they should!)

			_Q
F k _B T	M ⁴ M	energy flux thermal energy	
С		speed of light	_

Quantum constant, \hbar

- ▶ By fiat (when we choose $\hbar \equiv 1$), is now dimensionless.
- ▶ We do not list it.

F	M^4	energy flux
k_BT	M	thermal energy

Speed of light, c

- ▶ Also by fiat, $c \equiv 1$.
- ▶ We do not list it.

$$F$$
 M^4 energy flux k_BT M thermal energy

Because F contains M^4 and k_BT contains M, the form of the relationship between them must be

$$F \sim (k_B T)^4$$
.

No lunch is free, and no good deed goes unpunished!

No lunch is free, and no good deed goes unpunished!

$$F = \underbrace{\frac{\pi^2}{60} \frac{k_B^4}{\hbar^3 c^2}}_{\sigma} T^4$$
$$\sigma \equiv \frac{\pi^2}{60} \frac{k_B^4}{\hbar^3 c^2}$$

Calculate the Sun's surface temperature, T_{Sun}

Hints: use the Stefan–Boltzmann law, find the energy flux at the Sun's surface, F_{Sun} , using proportional reasoning ($F_{Earth} = 1300 \, \text{W/m}^2$).

Prep

Use the Stefan-Boltzmann law to predict the surface temperature of the Earth. Your prediction ought to be somewhat colder than reality. How do you explain the (life-saving) difference between prediction and reality?

Lightbulb filament

