

Flux

A.C. NORMAN

Radley College

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Physical flows live in a geometry

Physical flows are an amount per time (rate):

The geometry allows us to define a related quantity:

$$\mbox{flux of stuff} \equiv \frac{\mbox{rate}}{\mbox{area}} = \frac{\mbox{amount of stuff}}{\mbox{area} \times \mbox{time}}$$

Flux thoughts

- 1 Explain why rate (amount per time) is more useful than amount.
- 2 What kind of flux (flux of what?) is current density?

What is the average solar flux on Earth's surface?

At top of atmosphere, looking directly towards the Sun, the flux is $1300 \, W/m^2$.

What is the average solar flux on Earth's surface?

At top of atmosphere, looking directly towards the Sun, the flux is $1300 \, W/m^2$.

power = energy flux × area = $F\pi R_{\text{Earth}}^2$.

Remember that flux is connected to area, because flux is a rate per area.

Use proportional reasoning!

Remember that flux is connected to area, because flux is a rate per area.

Use proportional reasoning!

The solar flux F at a distance r from the Sun is the solar luminosity L_{Sun} —the radiant power output of the Sun—spread over a sphere with radius r:

$$F = \frac{L_{Sun}}{4\pi r^2}.$$

 $r_{\rm Pluto} = 40 \times r_{\rm Earth}$

What not to do:

$$r_{\mathsf{Earth}} = \sqrt{\frac{L_{\mathsf{Sun}}}{4\pi F_{\mathsf{Earth}}}} \mathsf{m}$$
 $r_{\mathsf{Pluto}} = 40 \times \sqrt{\frac{L_{\mathsf{Sun}}}{4\pi F_{\mathsf{Earth}}}} \mathsf{m}$

$$(extra\ baggage)$$

$$F = \frac{L_{\mathsf{Sun}}}{4\pi r}$$

$$F_{\mathsf{Pluto}} = \frac{L_{\mathsf{Sun}}}{4\pi r_{\mathsf{Pluto}}^2}$$

$$F_{\mathsf{Earth}} = 1300\,\mathsf{W/m}^2 \xrightarrow{F \propto r^{-2}} \mathsf{Prop.}\ reasoning}$$

$$F_{\mathsf{Pluto}} = \frac{1300}{40^2}\,\mathsf{W/m}^2$$

Instead, using proportional reasoning:

- ▶ As r changes, L_{Sun} and factor of 4π stay the same.
- ▶ Simplify $F = L_{Sun}/4\pi r^2$ to $F \propto r^{-2}$.
- ▶ This scaling relation is shorthand for

$$\frac{F_{\text{Pluto}}}{F_{\text{Earth}}} = \left(\frac{r_{\text{Pluto}}}{r_{\text{Earth}}}\right)^{-2}, \text{ or } F_{\text{Pluto}} = F_{\text{Earth}} \left(\frac{r_{\text{Pluto}}}{r_{\text{Earth}}}\right)^{-2}.$$

▶ Since $r_{\text{Pluto}} = 40 \times r_{\text{Earth}}$,

$$F_{\text{Pluto}} = \frac{1300 \, \text{W}}{\text{m}^2} \times \frac{1}{1600} \approx \frac{0.8 \, \text{W}}{\text{m}^2}.$$

Surface temp. depends mostly on so-called blackbody radiation

Radiated flux F is given by:

$$F = \sigma T^4$$
,

where $\sigma \approx 5.7 \times 10^{-8} \frac{\text{W}}{\text{m}^2\text{K}^4}$.

$$F = \frac{L_{\text{Sun}}}{4\pi r^2}$$
 Pluto surface energy
$$F = \sigma T^4$$

Simplify to scaling relations:

$$F \propto r^{-2}$$
 $F \propto T^4$

Combine to a single scaling relation:

$$r^{-2} \propto T^4$$
, so $T \propto (r^{-2})^{\frac{1}{4}}$, simplifying to $T \propto r^{-\frac{1}{2}}$.
Scale from the known $(T_{\sf Earth} = 298 \, {\sf K}, \, r_{\sf Pluto} = 40 r_{\sf Earth})$:

$$T_{
m Pluto} pprox rac{T_{
m Earth}}{\sqrt{40}} pprox rac{298 \,
m K}{6} pprox 50 \,
m K$$

Actual value: 44 K

[Source: https://en.wikipedia.org/wiki/Pluto]

