

Lasers

A.C. NORMAN

Radley College

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Today we shall

- 1 understand stimulated emission
- 2 know how a laser works
- **3** use our knowledge about energy levels from previous lessons

Textbook p. 183 [APFY]

Specification Requirement

4.5 - Lasers

the process of stimulated emission and how this process leads to light emission that is coherent the idea that a population inversion (N2 > N1) is necessary for a laser to operate the idea that a population inversion is not (usually) possible with a 2-level energy system

[Eduqas A Level Physics Specification, teaching from 2015]

Seeing a laser beam

[Image credit: Wikimedia / (CC-BY)]

Absorption: an atom absorbs energy (an electron jumps to an excited state)

A photon of adequate energy imparts its energy to the atom

Absorption: an atom absorbs energy (an electron jumps to an excited state)

A photon of adequate energy imparts its energy to the atom, causing the electron cloud to take on a new configuration.

Absorption: an atom absorbs energy (an electron jumps to an excited state)

An electron jumps into a higher-energy excited state, and the photon has ceased to exist.

Spontaneous emission is when an atom emits its overload of energy as a photon

Excited states are usually (not always!) short-lived, 10 ns or so is typical

Spontaneous emission is when an atom emits its overload of energy as a photon

An atom might emit some or all of its extra energy at any time as a photon

Spontaneous emission is when an atom emits its overload of energy as a photon

$$E_{3} \text{ photon}$$

$$E_{2} \rightarrow E_{1}$$

$$E_{1} \rightarrow E_{3} \rightarrow E_{1}$$

$$E_{2} \rightarrow E_{3} \rightarrow E_{1}$$

In doing so an electron reverts ('falls') to a lower energy state

Stimulated emission: a photon causes an excited atom to dump energy

$$E = hf$$

Stimulated emission: a photon causes an excited atom to dump energy

The atom loses energy by emitting another photon, in-step with the incoming photon.

Stimulated emission: a photon causes an excited atom to dump energy

- Predicted by Einstein in 1916
- ► Crucial to the operation of lasers (developed 1960)

In ordinary circumstances, not many atoms are excited: absorption is more likely than stimulated emission

This is known as a *population inversion*. The lower state is all but empty.

The laser: Light Amplification by Stimulated Emission of Radiation

Lasers aimed at the moon allow ranging to a few cm in $4 \times 10^5 \, \mathrm{km}$

[Image: Apollo XIV / NASA (public domain)]

Lasers are coherent

Laser speckle

Lasers work since photons are bosons, and get into the same quantum state

Fermions

[Image: Wikimedia / Timothy Rias (CC-BY)]

Lasers work since photons are bosons, and get into the same quantum state

Bosons

[Image: Wikimedia / Timothy Rias (CC-BY)]

Lasers work since photons are bosons, and get into the same quantum state

Semiconductor laser diodes are now the most common type of laser

Semiconductor laser diodes are now the most common type of laser

- ▶ small
- ▶ cheap
- ▶ far more efficient

Uses:

- ▶ fibre optics telecommunications
- barcode readers
- ► laser pointers
- ► CD/DVD/Blu-ray Disc reading / recording
- ▶ laser printing / scanning
- (increasingly) directional lighting sources

Problem: designing a laser

from Optical Physics, Lipson, Lipson & Lipson, copyright © 2011

A material has six energy levels A-F above the ground state, G. The time constants in ns are shown on the diagram. Suggest possible optically pumped lasers working with this material, and give pumping and output λ s.

