On uncertainty

$A.C. \ Norman \\ \text{ACN.Norman@radley.org.uk}$

Warm-up problems

- 1. Explain the difference between absolute undertainty and percentage undertainty.
- 2. Round the following numbers to (a) two significant figures and (b) four significant figures.
 - (i) 602.20
 - (a) 0.001 380 6
 - (b) 0.02241383
 - (c) 1.602 19
 - (d) 91.095
 - (e) 0.1660
 - (f) 299 790 000
 - (g) 66.2617
 - (h) 0.000 000 667 2
 - (i) 3.141593
- 3. Rewrite the ten numbers from question 2 in scientific notation.

Regular problems

- 4. A car covers a distance of $250\,\mathrm{m}$ in $13\,\mathrm{s}$; the average speed is calculated to the 10 decimal places of the calculator as $19.230\,769\,23\,\mathrm{m\,s^{-1}}$. Explain why it is incorrect to believe all of the significant figures of the quoted speed.
- 5. Work out the percentage uncertainty when a 5 V battery is measured to the nearest 0.2 V.
- 6. If I don't want to have to correct my watch more than once a week, and I never want my watch to be more than 1s from the correct time, calculate the necessary maximum relative uncertainty of the electronic oscillator which I can tolerate.
- 7. My two-storey house is 7.05 ± 0.02 m tall. The ground floor is 3.2 ± 0.01 m tall. How tall is the first floor?
- 8. I want to measure the resistance of a resistor. My voltmeter can read up to 5 V, with an absolute uncertainty of 0.1 V. My ammeter can read up to 1 A with an absolute uncertainty of 0.02 A. Assuming that my resistor is approximately 10 Ω , calculate the absolute uncertainty of the resistance I measure using the formula R = V/I. Assume that I choose the current to make the relative uncertainty as small as possible.

Extension problems

9. The angle of refraction θ_r for a light ray in a medium of refractive index n which is incident from a vacuum at an angle θ_i is obtained from Snell's law: $n \sin \theta_r = \sin \theta_i$. Calculate θ_r and its associated error if $\theta_i = 25.0 \pm 0.1$ ° and $n=1.54 \pm 0.01$.

