Particle Interactions

A.C. NORMAN

Bishop Heber High School

Collisions

Collisions are one of two ways particles can interact, producing different particles.

e.g.

$$p + p \longrightarrow p + n + \pi^+$$

Some of the kinetic energy of the protons goes into producing the extra mass of the neutron and pion.

Decays

e.g.

Most particles are unstable, and can decay into other particles (so long as certain rules are followed).

$$\pi^+ \longrightarrow \mu^+ + \nu_\mu$$

mass of $\pi^+ = 2.5 \times 10^{-28} \text{ kg}$

mass of $\mu^+=1.9 imes 10^{-28}~{
m kg}$

mass of ν_{μ} is almost zero (< 3.4 imes 10⁻³⁴ kg)

All unstable particles have a characteristic lifetime, which is the average time that it will take for that particle to decay.

$$p + p \longrightarrow p + p + \pi^{0}$$

$$p + n \longrightarrow p + p + \pi^{-}$$

$$\pi^{-} + p \longrightarrow n + \pi^{0}$$

$$p + p \neq p + p + \pi^{-}$$

$$\pi^+ + n \longrightarrow \Lambda^0 + K^+$$

$$\pi^+ + n \neq \Lambda^0 + K^+ + n$$

$$\pi^{+} + n \longrightarrow \Lambda^{0} + K^{+}$$

$$\pi^{+} + n \neq \Lambda^{0} + K^{+} + n$$

$$p + n \longrightarrow \Lambda^{0} + K^{+} + n$$

But now

$$p+n \neq \Lambda^0 + K^+$$

A new particle, X^- , has been found. What is its B?

$$\mathsf{p} + \mathsf{n} \longrightarrow \mathsf{p} + \mathsf{p} + \mathsf{n} + X^-$$

Researchers announce that the new particle went on to give the following interaction:

$$X^- + p \longrightarrow p + p + \pi^- + \pi^-$$

Are you happy with this?

Only kidding! What the X^- really did do was:

$$X^{-} + p \longrightarrow \pi^{-} + \pi^{-} + \pi^{+} + \pi^{+} + \pi^{0}$$

In fact,
$$X^- = \overline{p}$$

Why does the following reaction **not** occur (consider charge and strangeness to start with)?

$$K^+$$
 + n \neq π^+ Λ^0

Ç

В

Why does the following reaction **not** occur (consider charge and strangeness to start with)?

In every interaction:

- mass/energy must be conserved
- 2 momentum must be conserved
- charge Q must be conserved
- baryon number B must be conserved
- lepton number L must be conserved
- \odot strangeness S
 - 1 is conserved in collisions
 - ② changes by ± 1 in a weak decay

Example 1

Is the following interaction possible?

All of the quantities are conserved, so this β decay is possible.

Example 2

Is the following interaction possible?

Q, B and L are conserved, and the strangeness changes by +1 in this weak decay.

Example 3

Identify particle X:

From its properties, the particle X must be a π^+ .