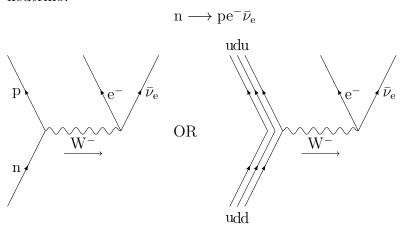
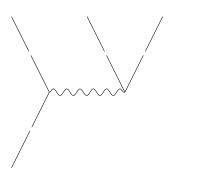
Feynman Diagrams

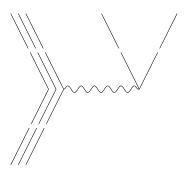

$A.C.\ Norman \\$ anorman@bishopheber.cheshire.sch.uk

When the American physicist wanted to calculate the probability of occurring, he drew a set of diagrams to show all possible outcome. These apparently simple diagrams allow very complex calculations to be solved easily.

Feynman diagrams represent — the between the particle lines are not significant, only the . The force is shown via an — particle.

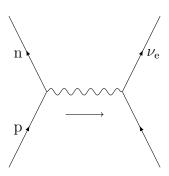
β^- decay

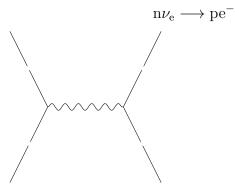

A neutron decays into a proton (a down quark changes into an up quark), emitting a and an antielectron neutrino:



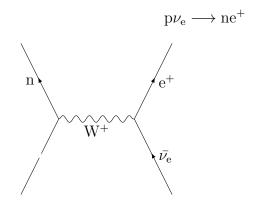
β^+ decay

A proton decays into a neutron, emitting a neutrino and positron:

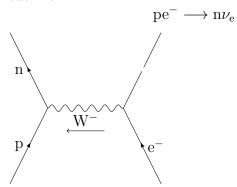

$$p \longrightarrow ne^+ \nu_e$$


Electron capture

An orbiting electron can be absorbed by a proton in the nucleus:


Neutrino-neutron collisions

A neutron can absorb a neutrino, turning into a proton and electron:


Antineutrino-proton collisions

A proton can absorb an anti electron neutrino, becoming a neutron and emitting a positron:

Electron-proton collisions

An electron can collide with a proton, emitting a neutron and a neutrino:

All of the above interactions involve the interaction, and they have all been experimentally .