Pair Production and Annihilation

A.C. NORMAN anorman@bishopheber.cheshire.sch.uk

mass of electron = 9.1×10^{-31} kg, mass of proton = 1.67×10^{-27} kg, $h = 6.64 \times 10^{-34}$ J s.

- 1. An electron and positron annihilate producing two gamma ray photons. Calculate the frequency of the photons if
 - (a) the electron/positron pair are stationary,
 - (b) the electron/positron pair are each travelling at 0.1c,
 - (c) the electron/positron pair are each travelling at 0.5c,

where $c = \text{speed of light} = 3 \times 10^8 \,\text{m s}^{-1}$.

[Ignore any effects due to relativity.]

- 2. A proton and antiproton, each travelling at a negligible speed, collide and annihilate according to the following reaction: $p\overline{p} \to K^0\overline{K}^0$. Assuming that the kaons move off at the same speed,
 - (a) by conservation of energy show that the speed of the kaons can be found by

$$v = \left(\frac{2c^2}{m_{\rm K^0}}(m_{\rm p} - m_{\rm K^0})\right)^{\frac{1}{2}},$$

where $m_{\rm K^0}$ is the mass of the kaon, $m_{\rm p}$ is the mass of the proton, and c is the speed of light.

- (b) given the $\rm K^0$ has a mass of $8.9 \times 10^{-28}\,\rm kg$, calculate the speed of the kaons.
- 3. Gamma ray photons can cause pair production, such as the production of an electron–positron pair, according to $\gamma \to e^-e^+$.
 - (a) What is the minimum energy of a gamma ray photon needed to produce this reaction?
 - (b) What is the frequency of this photon?
 - (c) The gamma ray has to interact with another object, such as a nucleus. Why is this so?
- 4. A proton–antiproton pair may interact according to $p\overline{p} \to \Sigma^{+}\overline{\Sigma}^{+}$ if the protons are given enough energy.

Calculate the minimum velocity of the protons for this reaction to occur.

[mass of
$$\Sigma^{+} = 1.99 \times 10^{-27} \,\mathrm{kg.}$$
]