Conservation Laws

A.C. NORMAN anorman@bishopheber.cheshire.sch.uk

1. The following table is a list of some baryons, and leptons.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	particle	Q/e	B	$L_{\rm e}$	L_{μ}	S
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p	+1	1	0		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	1	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0	1	0	0	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Σ^0	0	1	0	0	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Σ^+	+1	1	0	0	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{\Sigma}^+$	-1	-1	0	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	π^+	+1	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	π^-	-1	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	π^0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K^{+}	+1	0	0	0	+1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K^-	-1	0	0	0	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K^0	0	0	0	0	+1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e^{-}	-1	0	1	0	0
μ^+ +1 0 0 -1 0 $\nu_{\rm e}$ 0 0 1 0 0 ν_{μ} 0 0 0 1 0 ν_{μ} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e^+	+1	0	-1	0	0
$egin{array}{cccccccccccccccccccccccccccccccccccc$	μ^-	-1	0	0	1	0
$egin{array}{cccccccccccccccccccccccccccccccccccc$	μ^+	+1	0	0	-1	0
$egin{array}{cccccccccccccccccccccccccccccccccccc$		0	0	1	0	0
$\overline{\nu}_{\rm e}$ 0 0 -1 0 0		0	0	0	1	0
	$\overline{\overline{ u}}_{\mathrm{e}}^{r}$	0	0	-1	0	0
	$\overline{ u}_{\mu}$	0	0	0	-1	0

Use the table, and the conservation laws for charge, lepton number, baryon number and strangeness to identify whether the following reactions can or cannot occur.

Note: if a strange particle decays, then strangeness is not conserved.

(a)
$$\mu^+ \to e^+ \nu_e$$

(b)
$$\pi^+ \to \mu^+ \nu_\mu$$

(c)
$$\pi^0 \to e^- e^+ \gamma$$

(d)
$$\nu_{\rm e} n \rightarrow e^- \Sigma^+$$

(e)
$$\pi^+ p \to \Sigma^+ K^+$$

(f)
$$\Lambda \to p\pi^-$$

(g)
$$\pi^+ \to e^+ \nu_e$$

(h)
$$\pi^0 \to \pi^- e^+ \nu_\mu$$

2. Use the above table to identify particle X in the following reactions.

(a)
$$K^-p \to K^+K^0 + X$$

- (b) $\pi^+ n \to \Lambda + X$
- (c) $K^0p \rightarrow K^+ + X$
- 3. Give two reasons why a neutron cannot decay according to $n\to\pi^+e^-.$