Quark structure of baryons

A.C. NORMAN anorman@bishopheber.cheshire.sch.uk

- 1. (a) A baryon is formed from three quarks. There are ten possible combinations of the up, down and strange (u, d, and s) which will make baryons. List these ten combinations. u u u, u u d, u u s, u d s, u s s, d d d, d d u, d d s, d s s, s s s.
 - (b) The table below shows eleven baryons. Using your list from 1a identify the quark structure in each of the baryons.

particle	Charge $(Q) / e$	Baryon number	Strangeness	Quark Structure
p	+1	1	0	u u d
n	0	1	0	d d u
Λ	0	1	-1	u d s
Σ^+	+1	1	-1	u u s
Σ^0	0	1	-1	u d s
Σ^-	-1	1	-1	d d s
Δ^-	-1	1	0	d d d
Δ^{++}	+2	1	0	u u u
$\overline{\Xi}^0$	0	1	-2	uss
Ξ-	-1	1	-2	dss
Ω_{-}	-1	1	-3	s s s

- (c) Which two baryons have the same quark structure? Λ and Σ^0
- (d) How may they be different to each other?

 Difference in rest energy, due to the quarks being in differing energy states.
- (e) The diagram below is often called the *Baryon Octet*. Copy the diagram, and add on the eight particles at the intersections of the lines. (Don't put any Δ s on this diagram.)

(f) Why is there no particle with a strangeness of -2 and a charge of +1? For a baryon to have strangness of -2, it must contain two strange quarks, which would (together) have $Q = -\frac{2}{3}$. There exists no quark with the required properties $(Q = +\frac{5}{3}, B = +\frac{1}{3}, S = 0)$ to make the particle described in the question.