Quark structure of baryons

A.C. NORMAN anorman@bishopheber.cheshire.sch.uk

- 1. (a) A baryon is formed from three quarks. There are ten possible combinations of the up, down and strange (u, d, and s) which will make baryons. List these ten combinations.
 - (b) The table below shows eleven baryons. Using your list from 1a identify the quark structure in each of the baryons.

particle	Charge $(Q) / e$	Baryon number	Strangeness
p	+1	1	0
n	0	1	0
Λ	0	1	-1
Σ^+	+1	1	-1
Σ^0	0	1	-1
Σ^-	-1	1	-1
Δ^{-}	-1	1	0
Δ^{++}	+2	1	0
$\overline{\Xi}^0$	0	1	-2
Ξ^-	-1	1	-2
Ω^-	-1	1	-3

- (c) Which two baryons have the same quark structure?
- (d) How may they be different to each other?
- (e) The diagram below is often called the *Baryon Octet*. Copy the diagram, and add on the eight particles at the intersections of the lines. (Don't put any Δ s on this diagram.)

(f) Why is there no particle with a strangeness of -2 and a charge of +1?