On nuclear stability

A.C. NORMAN anorman@bishopheber.cheshire.sch.uk

- 1. Some 279 nuclei are stable, whilst others are not (about 2000 nuclides are known altogether). Discuss this statement and give some examples of unstable nuclides.
- 2. Assuming that protons may be modelled as small spherical balls of charge, use coulomb's law to calculate the force of electrostatic repulsion between two protons (both having charge $+1.6 \times 10^{-19}$ C) that are just touching each other. (diameter of proton = 1.4×10^{-15} m)
- 3. (a) Sketch an N-Z chart for stable nuclei (up to $^{209}_{83}$ Bi).
 - (b) Label the areas where proton-rich and neutron-rich nuclei are found, and what decay modes they are likely to follow.
 - (c) On your chart draw arrows (in appropriate places) to show the directions that α , β^+ , β^- and electron capture take a nucleus.
- 4. Discuss nuclear stability in terms of the four fundamental interactions in nature (strong, electromagnetic, weak, gravity). *Can you explain the shape of the valley of stability on the N-Z chart?
- 5. 36 Cl decays into 36 S and 36 Ar. Write equations for these two decays, and describe each mode of decay in words.
- 6. Wolfgang Pauli proposed the neutrino (though it was Fermi who gave it that name) in 1930 (before Chadwick discovered the neutron in 1932!), and said of his proposal: "I have done a terrible thing. I have invented a particle which cannot be detected". What lead Pauli to make his prediction of a new particle, and what makes neutrinos so hard to detect? **How do we detect them¹?
- 7. Draw an N-Z decay chart for uranium-235 using the following data. Draw alpha decays with a red line and beta decays with a blue one.
 - uranium-235, thorium-231, protactinium-231, actinium-227, thorium-227, radium-223, radon-219, polonium-215, lead-211, bismuth-211, thallium-207, lead-207 (stable)
- 8. The isotope ²³²Th decays into another element, emitting an alpha particle. What is the element? This element decays, and the next, and so on until a stable element is reached. The complete list of particles emitted in this chain is:

$$^{232}_{90}$$
Th $\rightarrow [\alpha\beta\beta\alpha\alpha\alpha\alpha\beta\beta\alpha] \rightarrow X$.

What is the stable element X? (You could write down each element in the series, but there is a quicker way.)

③

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

¹The first detection was by Reines and Cowan (et al.) in 1956, and they got a Nobel prize in 1995 (forty years later)!