Resultants I

A.C. Norman anorman@bishopheber.cheshire.sch.uk

- 1. By calculation, find the resultant magnitude and direction of the following pairs/sets of vectors:
 - (a) $7 \text{ N at } 90^{\circ} \text{ to } 24 \text{ N},$
 - (b) $20 \,\mathrm{N}$ at 90° to $20 \,\mathrm{N}$,
 - (c) 5 N north and 15 N south,
 - (d) 10 N north, 8 N south and 4 N east.
- 2. By scale drawing, find the resultant magnitudes and directions of the following pairs/sets of forces:
 - (a) 5 N east and 10 N north,
 - (b) 8 N east and 4 N west.
- 3. Calculate the resultants of the following pairs of forces, giving the angle of the resultant compared to the horizontal

- 4. An aircraft is flying at 250 m s⁻¹ on a heading due east when it encounters a wind of 50 m s⁻¹ blowing from a northerly direction.
 - (a) Draw a scale diagram of this,
 - (b) calculate (not measure) the resultant velocity of the aircraft,
 - (c) calculate the resultant direction of the velocity.
- 5. Hailstones falling vertically in still air have a constant velocity of $15\,\mathrm{m\,s^{-1}}$. If a gale blows horizontally at $20 \,\mathrm{m\,s^{-1}}$, calculate the resultant velocity (magnitude and direction) of the hailstones.
- 6. A particle is moving due east at 4 m s⁻¹ and it changes direction and starts to move due south at $3 \,\mathrm{m \, s^{-1}}$. Calculate the change in velocity.

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/