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Scalars and vectors

In physics we meet various quantities, and we are familiar that
some things like mass, energy, charge, length or temperature can be
represented by a unit scaled by a single number. Such quantities are
known as scalars, and these can be handled mathematically in the
same way as simple numbers (like the number of potatoes in a sack).

Other quantities in physics have both a size and a direction. A
good example is force, which is a push or a pull in a particular di-
rection. Saying ‘the overall force on the object is 20N’ is no use in
determining what will happen to it unless the direction is specified.
Direction is included in the concept of a force, and quantities like
this are called vectors.

It may seem obvious that all relations between physical quanti-
ties, that are the quantitative descriptions of physical process, must
be independent of the measuring scale1 and the frame of reference 1 This is why in all true physics formu-

las all terms have identical dimensions.
For example, in A+ B = C, while
A, B and C may be absurdly compli-
cated, they must all have the same
dimensions. This allows the equation
to be written in the dimensionless form
A
A + B

A = C
A—the same method al-

lows turns any valid equation into a
dimensionless form—and showing
that it is independent of the particular
choice of measurement units (just like
any equation describing the world
should be!)

used.
Vectors are often represented as an arrow with its size and direc-

tion representing the size and direction of the quantity. Why can
we represent force, say, by an arrow? Because it has the same math-
ematical transformation properties as an arrow in space. We can
represent it in a diagram as if it were an arrow, using a scale such
that one unit of force, or one newton, corresponds to a certain conve-
nient length. Once we have done this, all forces can be represented
as lengths, because an equation like

F = kr,

where k is some constant, is a perfectly legitimate equation. Thus we
can always represent forces by arrows, which is very convenient. An
equation like the one above will be true in any coordinate system if
it is true in one.

The fact that a physical relationship can be expressed as a vector
equation assures us that the relationship is unchanged by a mere
rotation or translation of the coordinate system. That is the reason
why vectors are so useful in physics.

Writing vectors

There are a number of conventions for writing vectors. In some
books, you will see vectors in bold type (r), in others they are writ-
ten with arrows over the letter (−→r ). Sometimes you might also see
underlining (r

˜
), which is much used in handwritten work.



SCALARS AND VECTORS 2

Vector components

Physical phenomena take place in the 3D world around us. Most
often, we use a 3D coordinate system to specify positions in space,
and other vector quantities. The vector can be described by the
coordinate system. Figure 1 shows a position vector that might
represent your final position if you started at the origin and walked
4m along the x axis, 2m in the direction of the z axis (parallel to it)
and the climbed a ladder so you were 3m above the ground.

r

rx = 4m
x

ry = 3m

y

rz = 2m

z

Figure 1: A position vector r in a right-
handed 3D coordinate system. In some
books, the x axis points out, the y axis
points to the right and the z axis points
up, but since we are also going to use
a 2D coordinate system with y up, it
makes sense to always have the y axis
pointing up

Your new position relative to the origin is a vector that can be
written

r = (4, 3, 2)

x component rx = 4m

y component ry = 3m

z component rz = 2m

The vector r can be represented by three numbers: rx, ry and rz .
Each of the numbers is called a component of the vector. The x com-
ponent of the vector r is rx (in this case 4m). A component is not a
vector (which needs three numbers to decribe it in 3D space) since it
is only one number, perhaps with a unit.2 Notice that although the 2 Although it is not a vector, it isn’t a

scalar either, as an important property
of a true scalar is that it doesn’t change
if we orient the xyz axes differently.
Rotating the axes doesn’t change an
object’s mass or temperature, but it will
change the x component of its velocity
as the the x axis now points in a new
direction

vector is in a sense made up from its components rx, ry and rz , it is
not really only those particular numbers, since if we were to rotate
the axes used to measure them, the three components would change,
but the vector r would stay the same. The symbol r for a vector is a
representation of the vector itself, so it will represent the same thing
no matter how we turn the axes.

Length (magnitude) of a vector

The length of a vector is found by using Pythagoras’ theorem (or its
extension to higher numbers of dimensions). For the vector r from
figure 1, the distance you moved from the starting point is given by√

(4m)2 + (3m)2 + (2m)2 = 5.4m.

We say that the magnitude |r| of the vector r is 5.4m.
The magnitude of a vector can be calculated by taking the square

root of the sum of the squares of its components. If the vector r =

(rx, ry, rz), then

|r| =
√
r2x + r2y + r2z (a scalar).

The magnitude of a vector is always a positive value.3 3 The length of a vector found in this
way is a true scalar, as it doesn’t de-
pend if the axes are rotated (although
the individual components will change,
the length of the arrow is invariant).

Multiplying a vector by a scalar

Multiplication by a scalar ‘scales’ a vector, keeping its direction
the same but making its length larger or smaller. Multiplying by a
negative scalar reverses the direction of the vector.
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Adding vectors

The resultant or vector sum of two displacement vectors is the result
of performing first one and then the other displacement.4 If two 4 The magnitude of the resulting vector

is in general not equal to the sum of the
magnitudes of the two original vectors!

forces act on a body then the resultant force acting on the body is
the vector sum of the two. Adding vectors in this way only makes
physical sense if they are the same kind of vector, for example both
forces acting in three dimensions.

The sum of two vectors can be interpreted geometrically: to com-
bine two vectors a and b, all we have to do is to put the head of a
against the tail of b (without changing the direction of either one),
and draw the final arrow from the tail of a to the head of b. That’s
all there is to it.

a

b
a

ba+ b

a

ba+ b

b

a

Figure 2: Adding two vectors by
placing them head-to-tail. This is
sometimes called the parallelogram
rule, because the resultant vector
forms the diagonal of a parallelogram
constructed with the vectors along two
adjacent sides.

Notice that we can add vectors in any order (mathematicians
would say that addition of vectors is commutative), i.e.

a+ b = b+ a.

Also, any number of vectors can be added like this, with each vector
telling you how far, and in in what direction, to move (this is shown
in figure 3). The final resultant vector tells you what single move to
make to end up in the same place.

1

2
3

4 1 2

3
4

sum

Figure 3: Any number of vectors can be
added together in the manner shown in
figure 2.

If we have the components of a vector—this is why describing
vectors as a set of components is so useful—the addition of the
vectors can be done by simply adding their components, i.e.

a+ b = (ax, ay, az) + (bx, by, bz) = (ax + bx, ay + by, az + bz),

and their difference by subtracting them,

a− b = (ax, ay, az)− (bx, by, bz) = (ax − bx, ay − by, az − bz).

Resolving vectors

a

a1e1

a2e2

e1

e2

Figure 4: In two dimensions, given
two different vectors, e1 and e2, it is
possible to write any other 2D vector in
terms of them:

a = a1e1 + a2e2.

The two vectors e1 and e2 are said
to form a basis (for the 2D space),
whilst the numbers a1 and a2 are the
components of a with respect to this
basis. We say that the vector has been
resolved into components.

Just as two vectors can be added together into one resultant vector,
in reverse any vector can be resolved into components. To do this, we
choose three vectors which do not all lie in the plane to use as a basis
to use to describe other vectors in terms of their components. Most
often we choose to use basis vectors that are all mutually perpen-
dicular to each other (this mathematical property is called orthog-
onality, the generalization of perpendicularity to a higher number
of dimensions), but this is not necessary, and this is shown in 2D for
general basis vectors in figure 4.
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To find the components of a vector, we could use a scale drawing,
but it is also possible to use trigonometry to calculate the compo-
nents. This is particularly straightforward when the basis vectors
are orthogonal. Consider the force vector F in the xy plane shown
in figure 5. We should like to represent F as (Fx, Fy) by using its
components Fx and Fy .

F

x

y

θx

Figure 5: A force vector F shown in
the xy plane of an orthogonal basis,
at an angle θx round from the x axis
direction.

From the definition of the cosine of an angle we know that

cos θx =
adjacent

hypotenuse
=
Fx

|F|
,

and similarly

cos θy =
adjacent

hypotenuse
=
Fy

|F|
,

where θy is the angle of the vector between the vector F and the
y axis (equal to 90°− θx as shown in figure 6).

|F|

x

y

θx

Fx

|F|
x

y

θy = 90°− θx
Fy

Figure 6: Resolution of a vector F into
its components Fx and Fy .

The components Fx and Fy of the vector are given by

Fx = |F| cos θx

and
Fy = |F| cos θy

respectively.5 The force F shown in figures 5 and 6 lies between 5 You may have noticed that the y
component of the vector can also
be calculated as |F| sin θx, and it is
often useful to recognize that a vector
component can be obtained using sine
instead of cosine. There is, however,
some advantage of always using
calculating in terms of cosines. The
method always works, including with
non-orthogonal basis vectors, and in
3D, and it avoids having to decide
whether to use a sine or a cosine. Just
use the cosine of the angle between the
direction you are resolving into and the
vector.

the x and y axes (i.e. θx < 90°), but this method works for larger
angles as well (for angles betwee 90° and 180°, the cosine function is
negative, corresponding to Fx being negative).
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