Motion in one dimension

A.C. NORMAN
ACN.Norman@radley.org.uk

In this activity, we shall model the kinematics of a ball moving in one dimension (vertically).

Getting started

1. Create anew program at http://www.glowscript.org (maybe named ‘SimpleUpThrow’).

2. Make a floor using the floor=box(pos=vec(0,0,0), size=vec(...)) command (fill in the
blanks so your ‘floor’ is thin in the y direction and extended in the x and z directions).

3. Make a ball using ball=sphere(pos=vec(0,0,0), radius=...). You might want to make
the floor and the ball different colours using e.g. color=color.red.

Making the ball move

In the absence of acceleration, the ball’s motion will be described by the equation

s = ut, or for a small time interval At,
As = uAt.

To use this equation to update the ball’s position, we need to give the ball a velocity u pointing
in the y direction, define a small interval in our program and tell it to start the clock at ¢ = 0
with the lines

ball.v = vec(0,2,0)
t=0
dt = 0.01

Now let’s get the ball to move. For every time-step At, we need to work out how far to move
the ball using As = uAt, and add this to the old position. In Python, we need a while loop to
make this happen:

while t < 3 :
rate(20)
ball.pos = ball.pos + ball.v * dt
t=t+dt

The result of running your program should now be a ball which moves upwards from the floor
at a constant rate.


mailto:ACN.Norman@radley.org.uk
http://www.glowscript.org

Adding constant acceleration

For an object moving with constant acceleration, we can use the constant acceleration (suvat)
equations. In particular,
v =u+ at.

For a small time interval At, the change in the velocity u is given by
Au = aAt.

We need to start by defining an acceleration vector. Let’s choose to model acceleration under
gravity (so our ball, ‘thrown’ upwards at ¢ = 0 ought to eventually come back down to the
floor), so this means that our acceleration vector will be

ball.a = vec(0,-9.81,0)
In our program, we will need to use the acceleration to update the velocity each time the while

loop commands are executed by working out the change in velocity and adding it to the old
velocity. We can do this with the line

ball.v = ball.v + ball.a * dt

At this point you may want to change the while loop test so that the program executes until
the ball comes back to the floor level (y = 0):

while ball.pos.y >= O:

Testing your program

Now do some simple tests of your program. A good way to do this is to use it to solve a problem
that you can already work out the answer to.

If a ball is thrown upwards at 3.4m/s,

1. How long does it take to come back down?

2. What is its maximum height?

You might want to add a print(...) statement to output e.g. the time after the while loop
has finished. Another useful way to get information out of your program is by plotting a graph.

Graph plotting

Add the line £1 = series() near the start of your program. This tells the computer that we
are going to plot a graph. However, it doesn’t tell it what to plot. We need to add a data point
to the graph during each step of the calculation. You can do this by adding a line inside the
loop (and thus indented) like this:

f1.plot(t,ball.p.y)

From this plot, you could easily find the maximum height.

@ @ @ Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-nc-sa/4.0/


http://creativecommons.org/licenses/by-nc-sa/4.0/

	Getting started
	Making the ball move
	Adding constant acceleration
	Testing your program
	Graph plotting


