First homework ANSWERS

$A.C.\ Norman \\$ anorman@bishopheber.cheshire.sch.uk

1 SI units

1. Find out the names of the seven base units used in the SI system of units.

Quantity	Unit
mass	kilogram (kg)
length	metre (m)
time	second (s)
electric current	ampere (A)
temperature	kelvin (K)
amount of substance	mole (mol)
luminous intensity	candela (cd)

2. Find out the definitions of the two base units which interest you the most.

Unit	Definition	
kg	The distance travelled by light in vacuum in $\frac{1}{299792458}$ second.	
\mathbf{m}	The mass of the International Prototype Kilogram.	
\mathbf{s}	The duration of 9 192 631 770 periods of the radiation corresponding	
	to the transition between the two hyperfine levels of the ground	
	state of the caesium 133 atom.	
A	The constant current which, if maintained in two straight paral-	
	lel conductors of infinite length, of negligible circular cross-section,	
	and placed 1 m apart in vacuum, would produce between these con-	
	ductors a force equal to 2×10^{-7} newtons per metre of length.	
K	The fraction $\frac{1}{273.16}$ of the thermodynamic temperature of the triple	
	point of water.	
mol	The amount of substance of a system which contains as many ele-	
	mentary entities as there are atoms in 0.012 kilogram of carbon 12.	
cd	The luminous intensity, in a given direction, of a source that emits	
	monochromatic radiation of frequency 540×10^{12} hertz and that	
	has a radiant intensity in that direction of $\frac{1}{683}$ watt per steradian.	

3. Find out the prefixes used in the SI system of units e.g. m, milli-, 10^{-3} . (You might want to lay these out in a table)

Prefix	Factor	Name
Y	10^{24}	yotta-
\mathbf{Z}	10^{21}	zetta-
${ m E}$	10^{18}	exa-
Р	10^{15}	peta-
${ m T}$	10^{12}	tera-
G	10^{9}	giga-
M	10^{6}	mega-
k	10^{3}	kilo-
h	10^{2}	hecto-
da	10^{1}	deca-
d	10^{-1}	deci-
\mathbf{c}	10^{-2}	centi-
m	10^{-3}	milli-
μ	10^{-6}	micro-
\mathbf{n}	10^{-9}	nano-
p	10^{-12}	pico-
f	10^{-15}	femto-
a	10^{-18}	atto-
\mathbf{Z}	10^{-21}	zepto-
У	10^{-24}	yocto-

2 Calculations / standard notation

1. How long does it take light to travel across a room of 6.0 m wide if the speed of light is $3.0\times10^8\,\mathrm{m~s^{-1}}$

$$speed = \frac{\frac{distance}{time}}{time}$$

$$time = \frac{\frac{distance}{speed}}{speed}$$

$$= \frac{6.0 \text{ m/s}}{3 \times 10^8 \text{ m/s}^{-1}}$$

$$= 2 \times 10^{-8} \text{ s.}$$

2. Find the volume of a small rectangular chip of dimension $0.50 \times 1.00 \times 0.25$ mm. Give answers in mm³, cm³ and m³.

$$\begin{split} \text{Volume} &= \text{length} \times \text{width} \times \text{depth} \\ &= 0.50 \, \text{mm} \times 1.00 \, \text{mm} \times 0.25 \, \text{mm} = 0.125 \, \text{mm}^3 \\ &= 0.05 \, \text{cm} \times 0.1 \, \text{cm} \times 0.025 \, \text{cm} = 1.25 \times 10^{-4} \, \text{cm}^3 \\ &= 0.5 \times 10^{-3} \, \text{m} \times 1 \times 10^{-3} \, \text{m} \times 0.25 \times 10^{-3} \, \text{m} = 1.25 \times 10^{-10} \, \text{m}^3. \end{split}$$

3. The radius of the Earth is approximately 6.4×10^6 m. Find its surface area and its volume.

Surface Area (sphere) =
$$4\pi r^2$$

= $4 \times \pi \times (6.4 \times 10^6 \text{ m})^2$
= $5.1 \times 10^{14} \text{ m}^2$.

Volume (sphere) =
$$\frac{4}{3}\pi r^3$$

= $\frac{4}{3} \times \pi \times (6.4 \times 10^6 \text{ m})^3$
= $1.1 \times 10^{21} \text{ m}^3$.

4. A fine wire has a diameter of 0.14 mm. Find its area of cross section in mm² and in m².

Area (circle) =
$$\pi r^2$$

= $\pi \times (0.07 \,\text{mm})^2 = 0.015 \,\text{mm}^2$
= $\pi \times (0.07 \times 10^{-3} \,\text{m})^2 = 1.5 \times 10^{-8} \,\text{m}^2$.

5. One light year is the distance travelled by light in one year. The speed of light is $3.0 \times 10^8 \,\mathrm{m \ s^{-1}}$. If a star is 12 light years away, find the distance to it in metres.

Distance = speed × time
=
$$3 \times 10^8$$
 m/s × 12 year × 365 day/year × 24 hour/day × 60 min/hour × 60 s/min
= 1.1×10^{17} m.

- 6. The planet Venus is approximately 110 000 000 km from the Sun.
 - (a) What is this distance in metres, written in standard form?

$$110\ 000\ 000\ \mathrm{km} = 110\ 000\ 000 \times 10^{3}\ \mathrm{m}$$

= $1.1 \times 10^{11}\ \mathrm{m}$.

(b) If its orbit were circular, how many metres would it travel to complete one orbit?

Circumference =
$$2\pi r$$

= $2 \times \pi \times 1.1 \times 10^{11} \text{ m}$
= $6.9 \times 10^{11} \text{ m}$.

7. The planet Mars is approximately 2.3×10^{11} m from the Sun. It takes about 690 days to travel once around the Sun. If its orbit were circular, find its average speed in m s⁻¹.

$$speed = \frac{distance}{time}$$

$$= \frac{2 \times \pi \times 2.3 \times 10^{11} \text{ m}}{690 \text{ day} \times 24 \text{ hour/day} \times 60 \text{ min/hour} \times 60 \text{ s/min}}$$

$$= 2.4 \times 10^3 \text{ m s}^{-1}.$$

3