Gravitational Potential

A.C. NORMAN

Bishop Heber High School

© (**) Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Warm up problems

- 1 The gravitational field strength on the moon is 1.7 N kg $^{-1}$. Assuming that the moon is a uniform sphere of radius 1.74×10^6 m, calculate
 - (a) the mass of the moon,
 - (b) the gravitational field strength 1.0×10^6 m above its surface.
- 2 A man is able to jump vertically 1.5 m on Earth. What height should he be able to jump on a planet of one third of the density of the Earth and one half of its radius?

Lesson Objectives

- 1 To look at order-of-magnitude physics
- 2 To learn what gravitational potential is.
- **3** To be able to calculate gravitational field strength.

REMINDER: Office hours are week 1 Tuesdays 3.45–5.0 p.m. in room 19.

Next office hours: Tuesday 25 September 2012

Specification Requirement

Gravitational potential

Understanding of the definition of gravitational potential, including zero value at infinity, and of gravitational potential difference.

Gravitational potential V in a radial field given by

$$V = -\frac{GM}{r}$$

Graphical representations of g and V with r.

[AQA GCE AS and A Level Specification Physics A, 2009/10 onwards]