Orbits I

$A.C.\ Norman \\$ anorman@bishopheber.cheshire.sch.uk

September 12, 2012

Take $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$, where necessary.

- 1. The space shuttle orbits at a height of 350 km above the Earth's surface. If the Earth has a mass of 6.0×10^{24} kg and a radius of 6.4×10^6 m, calculate
 - (a) the speed of the shuttle in this orbit,
 - (b) the time taken for one orbit,
 - (c) the angular velocity of this orbit.
- 2. The rings of Saturn consist of a vast number of small particles, each in a circular orbit. They are shown in the image below [Public Domain, from Cassini Spacecraft, NASA].

The inner edge of the inner ring is $70\,000\,\mathrm{km}$ from the centre of the planet, and the outermost edge of the outer ring is $140\,000\,\mathrm{km}$ from the centre. The speed of the outermost particles is $17\,\mathrm{km}~\mathrm{s}^{-1}$.

(a) Show that the speed, v, of a particle in orbit of radius r around a planet of mass M is given by

$$v = \sqrt{\frac{GM}{r}}.$$

- (b) Determine the mass of Saturn.
- (c) How long does it take for the outermost particles to complete an orbit?
- (d) Calculate the orbital speed of the particles nearest to Saturn.
- 3. (a) Use the following data about four of the moons of Uranus to plot a suitable graph to test Kepler's Law:

Orbit time / hour	60.5	99.5	209	323
Orbit radius $/ 10^3 \mathrm{km}$	192	266	436	582

- (b) If a further moon of Uranus were discovered with a period of 170 hours, what would be its orbital radius.
- (c) Use the graph to estimate a value for the mass of Uranus.