Gravitational Field Strength I

Take $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$, where necessary.

- 1. Define gravitational field strength
- 2. Show that the units of gravitational field strength are equivalent to those of acceleration.
- 3. Calculate the gravitational field strength on the surface of the Earth, if the radius of the Earth is 6.4×10^6 m, and the mass of the Earth is 6.0×10^{24} kg.
- 4. A planet has a radius of 8.0×10^7 m and a mass of 7×10^{26} kg. Calculate the gravitational field strength at
 - (i) the surface
 - (ii) twice the radius
 - (iii) three times the radius
 - (iv) four times the radius
 - (a) Sketch a graph showing how the gravitational field strength varies from the centre of the planet to a distance from the planet equal to four planetary radii. Include a scale on your graph.
- 5. The gravitational field strength on the moon is 1.7 N kg⁻¹. Assuming that the moon is a uniform sphere of radius 1.74 x10⁶ m, calculate
 - (a) the mass of the moon
 - (b) the gravitational field strength 1.0×10^6 m above its surface.
- 6. A man is able to jump vertically 1.5m on Earth. What height should he be able to jump on a planet of one third of the density of the Earth and one half of its radius.