
Com (a)		two features of a geo-synchronous orbit.
(u)	State	two features of a goo symmetrical cross.
	•••••	
		(2 marks)
(b)	Give	n that the mass of the Earth is 6.00×10^{24} kg and its mean radius is 6.40×10^6 m,
	(i)	show that the radius of a geo-synchronous orbit must be 4.23×10^7 m,
	(ii)	calculate the increase in potential energy of a satellite of mass 750 kg when it is raised from the Earth's surface into a geo-synchronous orbit.
		(6 marks)

2

3 The mass of the nucleus of an isolated copper atom is 63 u and it carries a charge of +29e. The diameter of the atom is 2.3×10^{-10} m.

P is a point at the outer edge of the atom.

(a)		alc	1	4 -
19	1 (aic	บบล	$\Gamma \boldsymbol{\rho}$
1 a		arc	uıa	w

(i)	the electric field strength at P due to the nucleus,
(ii)	the gravitational potential at P due to the nucleus.
	(5 marks)

(b) Draw an arrow on the above diagram to show the direction of the electric field at the point P. (1 mark)

2 (a) Complete the table of quantities related to fields. In the second column, write an SI unit for each quantity. In the third column indicate whether the quantity is a scalar or a vector.

quantity	SI unit	scalar or vector
gravitational potential		
electric field strength		
magnetic flux density		

(3 marks)

(b) (i)	A charged particle is held in equilibrium by the force resulting from a vertical electric field. The mass of the particle is 4.3×10^{-9} kg and it carries a charge of magnitude 3.2×10^{-12} C. Calculate the strength of the electric field.
(ii)	If the electric field acts upwards, state the sign of the charge carried by the particle.
	(3 marks)

 $\begin{pmatrix} \\ \\ \\ \\ \\ \\ \end{pmatrix}$

TURN OVER FOR THE NEXT QUESTION