| Com (a) | | two features of a geo-synchronous orbit. | |---------|-------|---| | (u) | State | two features of a goo symmetrical cross. | | | | | | | | | | | ••••• | | | | | (2 marks) | | (b) | Give | n that the mass of the Earth is 6.00×10^{24} kg and its mean radius is 6.40×10^6 m, | | | (i) | show that the radius of a geo-synchronous orbit must be 4.23×10^7 m, | (ii) | calculate the increase in potential energy of a satellite of mass 750 kg when it is raised from the Earth's surface into a geo-synchronous orbit. | (6 marks) | | | | | 2 3 The mass of the nucleus of an isolated copper atom is 63 u and it carries a charge of +29e. The diameter of the atom is 2.3×10^{-10} m. P is a point at the outer edge of the atom. | (a) | | alc | 1 | 4 - | |-----|-----|-----|-----|----------------------------| | 19 | 1 (| aic | บบล | $\Gamma \boldsymbol{\rho}$ | | 1 a | | arc | uıa | w | | (i) | the electric field strength at P due to the nucleus, | |------|--| | | | | | | | | | | (ii) | the gravitational potential at P due to the nucleus. | | | | | | | | | | | | (5 marks) | (b) Draw an arrow on the above diagram to show the direction of the electric field at the point P. (1 mark) 2 (a) Complete the table of quantities related to fields. In the second column, write an SI unit for each quantity. In the third column indicate whether the quantity is a scalar or a vector. | quantity | SI unit | scalar or vector | |-------------------------|---------|------------------| | gravitational potential | | | | electric field strength | | | | magnetic flux density | | | (3 marks) | (b) (i) | A charged particle is held in equilibrium by the force resulting from a vertical electric field. The mass of the particle is 4.3×10^{-9} kg and it carries a charge of magnitude 3.2×10^{-12} C. Calculate the strength of the electric field. | |---------|--| | | | | | | | | | | | | | (ii) | If the electric field acts upwards, state the sign of the charge carried by the particle. | | | (3 marks) | $\begin{pmatrix} \\ \\ \\ \\ \\ \\ \end{pmatrix}$ TURN OVER FOR THE NEXT QUESTION