Escape Velocity I

A.C. NORMAN anorman@bishopheber.cheshire.sch.uk

September 22, 2010

Take $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$, where necessary.

- 1. (a) What is the minimum gravitational potential energy which an object of mass m needs to gain if it is to completely escape the gravitational field of a planet whose mass is M and radius is R.
 - (b) Equate this to the kinetic energy required to show that the minimum velocity needed is

$$v_e = \sqrt{\frac{2GM}{R}}$$

(c) Show how this can be re-written as

$$v_e = \sqrt{2g_s R},$$

Where g_s is the surface gravitational field strength.

- 2. A rocket of mass 5.0×10^5 kg is standing on the surface of a planet whose mass is 6.6×10^{23} kg and radius is 3.4×10^6 m. If the rocket is to leave the gravitational field of the planet and all the kinetic energy is supplied in a single thrust, calculate:
 - (a) the surface gravitational potential of the planet,
 - (b) the minimum initial kinetic energy of the rocket,
 - (c) the minimum velocity at which the rocket must be projected.
- 3. A neutron star has a mass of 5.0×10^{29} kg and radius of 12 km. Calculate
 - (a) the density of the neutron star,
 - (b) the size of the gravitational field strength at its surface,
 - (c) the size of the gravitational potential at its surface,
 - (d) the impact velocity of a meteorite on its surface, assuming that it was at rest at the extreme limit of the star's gravitational field.
- 4. The sun has a mass of 2×10^{30} kg. If the sun were to turn into a black hole (where the escape velocity is 3.0×10^8 m s⁻¹), calculate the radius the sun would have.