On gravitational fields # $A.C.\ Norman \\$ ACN.Norman@radley.org.uk ## Warm-up problems - 1. Express Newton's law of gravitation in symbols, and show how the units of G can be expressed as $m^3 kg^{-1} s^{-2}$. - 2. Define gravitational field strength, and show that the units of gravitational field strength are equivalent to those of acceleration. - 3. Define gravitational potential and state its units. What is the link to GPE? #### Regular problems - 4. Calculate the gravitational pull of the Earth on the Moon, if the mass of the moon is 7.4×10^{22} kg, and the mass of the Earth is 6.0×10^{24} kg, and the distance between their centres is 3.8×10^8 m. - 5. Two lead spheres of radius 50 mm just touch each other. Calculate - (a) the volume of the spheres, in m³, - (b) the mass of the spheres, if the density of lead is 11000 kg m^{-3} , - (c) the gravitational force of attraction between them. - 6. If a satellite was placed on the surface of a planet of radius r, it would experience a force of F. Show that if it were put in an orbit at a height of r/50 above the planet's surface, the force on the planet would be 0.96F. - 7. The gravitational field strength on the moon is 1.7 N kg⁻¹. Assuming that the moon is a uniform sphere of radius 1.74×10^6 m, calculate - (a) the mass of the moon, - (b) the gravitational field strength 1.0×10^6 m above its surface. - 8. The moon has a mass of 7.7×10^{22} kg and a radius of 1.7×10^6 m. Calculate - (a) the gravitational potential at its surface, - (b) the gravitational potential at a height of 1.0×10^6 m above the surface, - (c) the gravitational potential difference between these two points, - (d) the work done in moving a 1.5×10^3 kg space craft from the moon's surface to a height of 1.0×10^6 m, - (e) the additional work needed in moving the spacecraft from this height until it totally escapes the moon's gravitational field. - 9. (a) What is the minimum gravitational potential energy which an object of mass mneeds to gain if it is to completely escape the gravitational field of a planet of mass M and radius R from its surface? - (b) Presuming the object has this energy only from the kinetic energy at the start of its motion, show that the minimum initial speed for escape is $$v_e = \sqrt{\frac{2GM}{R}}.$$ (c) Show that this can be rewritten $v_e = \sqrt{2g_sR}$, where g_s is the surface gravitational field strength. ### Extension problems 10. Why could Newton's law of gravitation not be $$F = G \frac{m_1^2 m_2}{r^2}?$$ 11. A man is able to jump vertically 1.5 m on Earth. What height should he be able to jump on a planet of one third of the density of the Earth and one half of its radius?