On resistor combinations

A.C. NORMAN ACN.Norman@radley.org.uk

Warm-up problems

- 1. What are the rules for combining the resistances of resistors connected in series and parallel?
- 2. Draw a circuit diagram for the common configuration of resistors known as a *potential* divider, and explain how it works.
- 3. Find out how a potential divider is used in a sensing circuit to measure temperature, and draw a possible circuit diagram of such an arrangement.

Regular problems

4. Find the combined resistance of the following resistors, showing your step-by-step working carefully.

- 5. Use the rule for combinations of parallel resistors to
 - (a) prove that, for two resistors with resistances R_1 and R_2 connected in parallel, their combined resistance is $\frac{R_1R_2}{R_1+R_2}$;
 - (b) prove that, for N resistors of equal resistance R in parallel, their combined resistance is R/N.
- 6. (AQA) A thermistor is connected in series with a resistor, R, and battery of emf 6.0 V and negligible internal resistance.

When the temperature is 50 °C the resistance of the thermistor is $1.2 \,\mathrm{k}\Omega$. The voltmeter connected across R reads 1.6 V.

- (a) Calculate the p.d. across the thermistor.
- (b) Calculate the current in the circuit.
- (c) Calculate the resistance of R quoting your answer to an appropriate number of significant figures.
- 7. (AQA question, adapted) Two resistors, R_1 and R_2 are connected in series with a battery of e.m.f. 12 V and negligible internal resistance. If a voltmeter is connected across R_1 , the reading on the voltmeter is 8.0 V, and the resistance of R_2 is 60 Ω .
 - (a) Calculate the current in the circuit.
 - (b) Calculate the resistance of R_1 .
 - (c) Calculate the charge passing through the battery in 2.0 minutes. Give an appropriate unit for your answer.
 - (d) R_2 is now replaced with a thermistor. State and explain what will happen to the reading on the voltmeter as the temperature of the thermistor increases.

Extension problems

8. (based on a CEA Advanced extension award question) Four resistors of value 1.0Ω , 2.0Ω , $3.0\,\Omega$ and $4.0\,\Omega$ are used to make this circuit.

The resistance is measured between pairs of terminals in turn, with the following results:

between terminals A and B $1.6\,\Omega$ between terminals B and C $0.9\,\Omega$ between terminals C and D $2.4\,\Omega$ between terminals D and A 2.1 Ω

Deduce the resistance of each of the resistors P, Q, R and S. Show your reasoning clearly.

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/4.0/