On current electricity

$A.C.\ Norman \\$ ACN.Norman@radley.org.uk

Warm-up problems

- 1. What are the units of charge, current, voltage and resistance? Express each of these units in SI base units.
- 2. What are the other two alternative names for *voltage*? Give the equation linking voltage, energy and charge.
- 3. Give the equations linking
 - (a) current to charge and time,
 - (b) resistance to current and voltage.

Regular problems

- 4. Why are *electrons*, rather than *protons*, the principal charge carriers in a metal wire?
- 5. (a) What is the current in a circuit if the charge passing each point is (i) $10 \,\mathrm{C}$ in $2 \,\mathrm{s}$, (ii) $20 \,\mathrm{C}$ in $40 \,\mathrm{s}$, (iii) $240 \,\mathrm{C}$ in $2 \,\mathrm{minute}$?
 - (b) If the current through a lamp is 5 A, what charge passes in (i) 1 s, (ii) 10 s, (iii) 1 minute?
- 6. The voltage across a lamp is $12\,\mathrm{V}$. How much electrical energy is changed into heat and light when
 - (a) a charge of 1 C passes through it,
 - (b) a charge of 5 C passes through it,
 - (c) a current of 2 A passes through it for 10 s?
- 7. (a) What is the voltage across a $220\,\Omega$ resistor when a current of 3 mA flows through it?
 - (b) The voltage across a $2.7 \,\mathrm{k}\Omega$ resistor is $5.4 \,\mathrm{V}$. What current flows?
 - (c) Calculate the resistance of a resistor if a voltage of 9 V causes a current of 1.5 mA to flow through is.
 - (d) A current of $0.4\,\mathrm{mA}$ flows through a $10\,\mathrm{k}\Omega$ resistor. What is the voltage across its ends?
- 8. (a) If the voltage across a circuit is held constant while the resistance doubles, what change occurs in the current?

- (b) If the resistance across a circuit halves while the voltage increases by a factor of three, what change occurs in the current?
- (a) What is the combined resistance of the following resistors connected in parallel: $220\,\Omega$, $100\,\Omega$, $470\,\Omega$?
 - (b) Calculate the combined value of the following resistors connected in series: $33 \text{ k}\Omega$, $18 \,\mathrm{k}\Omega$, $4.7 \,\mathrm{k}\Omega$. If a battery supplies a current of $215 \,\mu\mathrm{A}$ through the resistors when they are connected to it, what is the battery voltage?

Extension problems

- 10. A $10 \,\mathrm{k}\Omega$ and a $6 \,\mathrm{k}\Omega$ resistor are connected in series. If both resistors have a manufacturing tolerance of $\pm 10\%$, what, approximately, are the maximum and minimum values of resistance we should expect to measure across the combination?
- 11. In the following infinite network of 1Ω resistors, what is the resistance (as measured by an ohmmeter) between A and B?

