On capacitor charging

A.C. NORMAN

ACN.Norman@radley.org.uk

Warm-up problems

- 1. What is the formula for how the voltage across a capacitor which is being charged varies with time? Be very careful to show what each symbol means.
- 2. Find out what a *supercapacitor* is. What are its advantages over a battery in an application such as electric cars?

Regular problems

- 3. A capacitor of capacitance $200\,\mu\text{F}$ is charged through a resistor of resistance $300\,\text{k}\Omega$.
 - (a) What is the time constant for this circuit?
 - (b) How long will the capacitor take to charge to (i) 50%, (ii) 75%, (iii) 90% and (iv) 99.9% of a full charge?
- 4. (from Nelkon & Parker) The circuit below shows a capacitor C and a resistor R in series. The applied voltage varies with time as shown. The product CR is of the order 1s. Sketch graphs showing the way the voltages across R and C vary with time. If the product CR were made considerably smaller than 1s what would be the effect on the graphs?

- 5. A 4.5 V battery pack is connected to a 220 μ F capacitor through a resistance of 220 $k\Omega$ by a student wishing to investigate the charging of a capacitor.
 - (a) What is the initial current?
 - (b) What is the current after one minute?
 - (c) What is the voltage after two minutes?
 - (d) How long does it take for the voltage to get to (i) 3.0 V (ii) 4.0 V?
 - (e) What is the current at each of these times?
 - (f) How much energy is stored in the capacitor at each of these times?

Equation	Plotted on y	Plotted on x	y-intercept	Gradient
$Q = Q_0(1 - e^{-t/RC})$	Q	t		
$V = V_0 e^{-t/RC}$	$\ln(V)$	t		
$Q = Q_0(1 - e^{-t/RC})$	Q	t		
$I = I_0 e^{-t/RC}$	I	$e^{t/RC}$		

- 7. Show that when a battery is used to charge a capacitor through a resistor, the heat dissipated in the resistor in the circuit is equal to the energy stored in the capacitor.
- 8. Examine the graph below, of the current through a capacitor.

- (a) Estimate the physical quantity corresponding to the area under the graph.
- (b) What was the initial current? Was the capacitor charging or discharging?
- (c) What is the time constant? If the resistor was 470Ω , what was the capacitance?
- (d) What voltage is this capacitor charged up to?

Extension problems

9. (from CEA advanced extension award question) A feature of circuits containing charged capacitors is that there is often a spark at the contacts when a switch is opened or closed. In the circuit below the capacitors are initially uncharged and both switches are open.

Initially, switch S_1 is closed, charging the $67\,\mu\text{F}$ capacitor from the battery. S_1 is then opened, leaving the $67\,\mu\text{F}$ capacitor fully charged and the $22\,\mu\text{F}$ capacitor still uncharged. When switch S_2 is closed, a spark occurs at the contacts of this switch. Estimate the energy dissipated in this spark. Is your value likely to be an over-estimate or an underestimate? Give a reason.

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/4.0/