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Warm-up problems

1. What is the formula for how the voltage across a capacitor which is being charged varies
with time? Be very careful to show what each symbol means.

V = V0

(
1− e−

t
RC

)
,

where V is the voltage across the capacitor, V0 is the final voltage across the capacitor
when it is fully charged, t is the time elapsed since charging started (when the capacitor
had zero charge), R is the resistance in the circuit, and C is the capacitance of the
capacitor

2. Find out what a supercapacitor is. What are its advantages over a battery in an applica-
tion such as electric cars?

A supercapacitor is a capacitor which has a much higher capacitance than the usual
capacitors, and can store much more energy per unit volume or mass. It can charge and
discharge much faster than a battery, and does not degenerate as quickly when ‘cycled’
charged and discharged. Supercapacitors may therefore be ideal for electric cars, which
need to charge quickly in order to avoid hanging around waiting, charge/discharge many
thousands of times, and deliver high current for acceleration.

Regular problems

3. A capacitor of capacitance 200 µF is charged through a resistor of resistance 300 kΩ.

(a) What is the time constant for this circuit?

RC = 200 µF× 300 kΩ = 60 s.

(b) How long will the capacitor take to charge to (i) 50%, (ii) 75%, (iii) 90% and (iv)
99.9% of a full charge?

Q = Q0

(
1− e−t/RC

)
(1)

1− Q

Q0

= e−t/RC (2)

ln

(
1− Q

Q0

)
= − t

RC
(3)

t = −RC ln

(
1− %

100%

)
(4)

This gives (i) 42 s (ii) 83 s (iii) 140 s (iv) 690 s.
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4. (from Nelkon & Parker) The circuit below shows a capacitor C and a resistor R in series.
The applied voltage varies with time as shown. The product CR is of the order 1 s. Sketch
graphs showing the way the voltages across R and C vary with time. If the product CR
were made considerably smaller than 1 s what would be the effect on the graphs?

C R

V

V

t/s
0 1 2 3 4 5

V

t/s
0 1 2 3 4 5

With RC = 0.2 s, the graph would be less smooth (as RC gets bigger, the graph tends to
a flat line at V/2; as RC → 0, the graph tends to its original shape):

V

t/s
0 1 2 3 4 5

5. A 4.5 V battery pack is connected to a 220 µF capacitor through a resistance of 220 kΩ
by a student wishing to investigate the charging of a capacitor.

(a) What is the initial current?

I =
V

R
(5)

=
4.5 V

220 kΩ
(6)

= 2.0× 10−5 A. (7)

(b) What is the current after one minute?

I = I0e
−t/RC (8)

= 2.0× 10−5 A× e−60 s/(220 kΩ×220 µF) (9)

= 5.8 µA. (10)
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(c) What is the voltage after two minutes?

V = V0

(
1− e−t/RC

)
(11)

= 4.5 V ×
(
1− e−120 s/(220 kΩ×220 µF)

)
(12)

= 4.1 V. (13)

(d) How long does it take for the voltage to get to (i) 3.0 V (ii) 4.0 V?

V = V0

(
1− e−t/RC

)
(14)

1− V

V0

= e−t/RC (15)

− t

RC
= ln

(
1− V

V0

)
(16)

t = −RC ln

(
1− V

V0

)
(17)

So for (i):

t = −220 kΩ× 220 µF× ln

(
1− 3.0 V

4.5 V

)
(18)

= 53 s. (19)

and for (ii):

t = −220 kΩ× 220 µF× ln

(
1− 4.0 V

4.5 V

)
(20)

= 110 s. (21)

(e) What is the current at each of these times?
Here, we can take a shortcut. Rather than substituting the times just calculated
into I = I0e

−t/RC , we can substitute e−t/RC = I
I0

into V = V0

(
1− e−t/RC

)
to give

V

V0

= 1− I

I0

. (22)

Hence

I = I0

(
1− V

V0

)
(23)

=
V0

R

(
1− V

V0

)
(24)

=
V0

R
− V

R
(25)

=
V0 − V

R
(26)
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So (i) at 53 s when the voltage across the capacitor is 3.0 V,

I =
V0 − V

R
(27)

=
4.5 V − 3.0 V

220 kΩ
(28)

= 6.8 µA, (29)

and (ii) at 110 s when the voltage across the capacitor is 4.0 V,

I =
4.5 V − 4.0 V

220 kΩ
(30)

= 2.3 µA (31)

(f) How much energy is stored in the capacitor at each of these times?

E = 1
2
QV = 1

2
CV 2 = 1

2
Q2

C
. The best version to use in this case is E = 1

2
CV 2, which

for (i) gives

E =
1

2
CV 2 (32)

=
1

2
× 220 µF× (3.0 V)2 (33)

= 9.9× 10−4 J, (34)

and for (ii) gives

E =
1

2
× 220 µF× (4.0 V)2 (35)

= 18× 10−4 J. (36)

6. Copy and complete the following table. If the graph is not going to be a straight line,
write ‘not straight’ instead of the gradient (Hint: you might like to try Isaac Physics A6 )

Equation Plotted on y Plotted on x y-intercept Gradient

Q = Q0(1− e−t/RC) Q t
V = V0e

−t/RC ln(V ) t
Q = Q0(1− e−t/RC) Q t

I = I0e
−t/RC I et/RC

Equation Plotted on y Plotted on x y-intercept Gradient

Q = Q0(1− e−t/RC) Q t 0 not straight
V = V0e

−t/RC ln(V ) t ln(V0) − 1
RC

Q = Q0e
−t/RC Q t Q0 not straight

I = I0e
−t/RC I e−t/RC 0 I0

7. Show that when a battery is used to charge a capacitor through a resistor, the heat
dissipated in the resistor in the circuit is equal to the energy stored in the capacitor.
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C R

V0

The energy stored in the capacitor when it has fully charged to the battery voltage V0 is
given by E = 1

2
CV0

2.

The energy dissipated in the resistor is given by

E =

∫
P dt, and since P = IV =

V 2

R
, (37)

=

∫
V 2

R
dt (38)

=
1

R

∫ ∞
0

V0
2e−

2t
RC dt (39)

=
V0

2

R

[
RC

2
e−

2t
RC

]t=∞
t=0

(40)

=
V0

2

R

RC

2
(41)

=
1

2
CV0

2, (42)

which is equal to the energy stored in the capacitor.

8. Examine the graph below, of the current through a capacitor.

time / s

current / mA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1
2
3
4
5

(a) Estimate the physical quantity corresponding to the area under the graph.
The area under the graph in this case is the charge stored by the capacitor. Exponen-
tials are so ubiquitous—in electronic circuits, in atmospheric pressure, in radioactive
decay—and consequently the area under an exponential occurs so often, it is useful
to have a rule-of-thumb (or heuristic) to help us integrate it. In dimensionless form,
the integral of the exponential e−t is∫ ∞

0

e−t dt.

To approximate its value, let’s lump the e−t curve into one rectangle. What values
ought to be chosen for the width and height of the rectangle? A reasonable height for
the rectangle is the maximum of e−t, namely 1. To choose its width, use significant
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change as the criterion: choose a significant thance in e−t; then find the width ∆t
that produces this change. In an exponential decay, a simple and natural significant
chance is when e−t becomes a factor of e closer to its final value (which is 0 here
because t goes to ∞). With this criterion, ∆t = 1. The lumping rectangle then has
area of 1 (which is in fact the exact value of the integral!)

Returning to the problem at hand, and using the 1/e heuristic outlined above, the
charge stored by the capacitor can be estimated by lumping the area under the graph
into a rectangle of height 5 mA, and width given by the time taken to fall to 1/e of
this value (NB this will be one time constant, or RC.) From the graph, the time
taken for the current to fall to 1.8 mA is about 0.5 s, and thus the charge stored is
Q = 5 mA × 0.5 s = 2.5 mC. Dimensionally, this is indeed a charge, and easy cases
also check out, giving us confidence in our answer.

(b) What was the initial current? Was the capacitor charging or discharging?
Although it is easy to read the initial current of 5 mA off the graph, it is impossible
to tell whether the capacitor is charging of discharging from the information given.

(c) What is the time constant? If the resistor was 470 Ω, what was the capacitance?
The time constant is the time taken for the the current to fall to 5.0 mA/e = 1.8 mA,
which is about 0.5 s. If the resistor was 470 Ω, since the time constant is given by
RC, the capacitance is

0.5 s

470 Ω
= 1 mF.

(d) What voltage is this capacitor charged up to?
The voltage V0—either the initial voltage across the capacitor to which is has been
charged, or the supply voltage to which it is connected—is given by V0 = I0R =
5 mA× 470 Ω = 2.4 V.

Extension problems

9. (from CEA advanced extension award question) A feature of circuits containing charged
capacitors is that there is often a spark at the contacts when a switch is opened or closed.
In the circuit below the capacitors are initially uncharged and both switches are open.

6.0 V

S1

67 µF

22 µF

S2

Initially, switch S1 is closed, charging the 67 µF capacitor from the battery. S1 is then
opened, leaving the 67 µF capacitor fully charged and the 22 µF capacitor still uncharged.
When switch S2 is closed, a spark occurs at the contacts of this switch. Estimate the
energy dissipated in this spark. Is your value likely to be an over-estimate or an under-
estimate? Give a reason.

Let’s label the battery voltage as V0, and relabel the 67 µF capacitor as C1, and the 22 µF
capacitor as C2:
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V0

S1

C1

C2

S2

When S1 is closed, the capacitor C1 charges, to a charge Q = C1V0. The energy stored
in C1 at this point is given by E = 1

2
CV 2 = 1

2
C1V0

2.

Then S1 is opened, and S2 is closed. We want to know the final energy, after some charge
has flowed from the plates of C1 onto those of C2. What can we say about this final
situation? Firstly, the overall charge of the combination must be the same as before the
switch S2 is closed, i.e. Q1 + Q2 = Q. There must be also be the same voltage across
each of the capacitors C1 and C2 (let’s call it V ).

Now let’s use these facts. Starting with Q1 + Q2 = Q, we can see that since Q1 = C1V
and Q2 = C2V ,

C1V + C2V = Q (43)

(C1 + C2)V = C1V0 (44)

V =
C1V0

C1 + C2

. (45)

The total energy at the end is given by E = 1
2
CV 2 as

Efinal =
1

2
(C1 + C2)V 2 (46)

=
1

2
(C1 + C2)

(
C1V0

C1 + C2

)2

(47)

=
1

2

C1
2V0

2

C1 + C2

. (48)

The energy loss when switch S2 is closed gives us an estimate of the energy dissipated in
the spark at S2:

Espark = E − Efinal (49)

=
1

2
C1V0

2 − 1

2

C1
2V0

2

C1 + C2

(50)

=
1

2
C1V0

2

(
1− C1

C1 + C2

)
(51)

=
1

2
C1V0

2

(
C2

C1 + C2

)
(52)

=
1

2

C1C2

C1 + C2

V0
2 (53)

=
1

2
× 67 µF× 22 µF

67 µF + 22 µF
× (6.0 V)2 (54)

= 3.0× 10−4 J. (55)

This is likely to be an overestimate, as all of the energy loss will not be in the spark itself;
some energy loss will also occur in heating in the wires of the circuit.
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