

PHYSICS (SPECIFICATION A) PA01 Unit 1 Particles, Radiation and Quantum Phenomena Data Sheet

a Sheet							
Fundamental constants and values					Mechanics and Applied	Fields, Waves, Quantum	
Quantity		Symbol		Units	Physics	Phenomena	
speed of lig		c	3.00×10^{8}	m s ⁻¹	v = u + at	F	
1 ^	y of free space	μ_0	$4\pi \times 10^{-7}$	H m ⁻¹ F m ⁻¹	$s = \left(\frac{u+v}{2}\right)t$	$g = \frac{F}{m}$	
charge of el	of free space	$\begin{bmatrix} \epsilon_0 \\ e \end{bmatrix}$	$\begin{array}{c c} 8.85 \times 10^{-12} \\ 1.60 \times 10^{-19} \end{array}$	C	2)	$g = -\frac{GM}{r^2}$	
the Planck constant		h	6.63×10^{-34}	J _s	at^2	$\int_{0}^{8} r^{2}$	
gravitational constant		G	6.67×10^{-11}	$N m^2 kg^{-2}$	$s = ut + \frac{at^2}{2}$	AV	
the Avogadro constant		$N_{\rm A}$	6.02×10^{23}	mol ⁻¹	$v^2 = u^2 + 2as$	$g = -\frac{\Delta V}{\Delta x}$	
molar gas constant		R	8.31 1.38×10^{-23}			au.	
the Boltzmann constant the Stefan constant		$\begin{pmatrix} k \\ \sigma \end{pmatrix}$	1.38×10^{-8} 5.67×10^{-8}	W m ⁻² K ⁻⁴	$F = \frac{\Delta(mv)}{\Delta t}$	$V = -\frac{GM}{r}$	
	the Wien constant		2.90×10^{-3}	m K		$a = -(2\pi f)^2 x$	
1	electron rest mass		9.11×10^{-31}	kg	$P = F_{\nu}$		
	to 5.5×10^{-4} u)		4 7 4 1011	a1	afficiency – power output	$\nu = \pm \ 2\pi f \sqrt{A^2 - x^2}$	
1	arge/mass ratio	$m_{\rm p}$	$\begin{array}{c c} 1.76 \times 10^{11} \\ 1.67 \times 10^{-27} \end{array}$	C kg ⁻¹	$efficiency = \frac{power\ output}{power\ input}$	$x = A \cos 2\pi f t$	
1 ^	proton rest mass (equivalent to 1.00728u)		1.07 × 10	kg	2)	$T = 2 - \sqrt{m}$	
	ge/mass ratio	$e/m_{\rm p}$	9.58×10^{7}	C kg ⁻¹	$\omega = \frac{v}{r} = 2\pi f$	$T = 2\pi\sqrt{\frac{m}{k}}$	
neutron rest mass		$m_{\rm n}$	1.67×10^{-27}	1	.2	$T = 2\pi\sqrt{\frac{l}{g}}$	
1 \ 1	to 1.00867u)	g	0.01	NT 11	$a = \frac{v^2}{r} = r\omega^2$	y <i>g</i>	
1 -	gravitational field strength acceleration due to gravity		9.81	N kg ⁻¹ m s ⁻²	'	$\lambda = \frac{\omega s}{D}$	
atomic mass		g u	1.661×10^{-27}	kg	$I = \sum mr^2$	_	
(1u is equiv					·	$d\sin\theta = n\lambda$	
931.3 MeV)		l			$E_{\rm k} = \frac{1}{2} I \omega^2$	$\theta \approx \frac{\lambda}{D}$	
Fundamental particles					$\omega_2 = \omega_1 + \alpha t$	$_{1}n_{2} = \frac{\sin \theta_{1}}{\sin \theta_{2}} = \frac{c_{1}}{c_{2}}$	
Class	Name	Syn	nbol Re	est energy	$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$		
		-	/N	1eV		$1n_2 = \frac{n_2}{n_1}$	
photon	photon	γ	0		$\omega_2^2 = \omega_1^2 + 2\alpha\theta$	$\sin \theta_{\rm c} = \frac{1}{n}$	
lepton	neutrino	$\nu_{ m e}$	0		$\theta = \frac{1}{2} (\omega_1 + \omega_2) t$	$\sin \theta_{\rm c} = \frac{1}{n}$	
1		ν_{μ}	0		$0 = {}_{2}\left(\omega_{1} + \omega_{2}\right)i$	E = hf	
	electron	e^{\pm}	0.3	510999	$T = I\alpha$	$hf = \phi + E_{\mathbf{k}}$	
	muon	μ^{\pm}	10	5.659	angular momentum = Iω	$hf = E_1 - E_2$	
mesons	pion	π^{\pm}	13	9.576	$W = T\theta$	$\lambda = \frac{h}{p} = \frac{h}{mv}$	
		π^0	13	4.972	$P = T\omega$	$\lambda = \frac{1}{p} = \frac{1}{mv}$	
	kaon	\mathbf{K}^{\pm}	49	3.821		$c = \frac{1}{1}$	
ĺ		K^0	49	7.762	angular impulse = change of	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$	
baryons	proton	p	93	8.257	angular momentum = Tt $\Delta Q = \Delta U + \Delta W$		
	neutron	n	93	9.551	$\Delta W = p\Delta V$ $\Delta W = p\Delta V$	Electricity	
					$pV^{\gamma} = \text{constant}$	E	
Properties	of quarks					$\in = \frac{E}{Q}$	
Туре	Charge	Bar	yon St	rangeness	work done per cycle = area	$\in = I(R+r)$	
	O		nber	Ü	of loop	, ,	
	. 2		1	0	input power = calorific	$\frac{1}{R} = \frac{1}{R} + \frac{1}{R} + \frac{1}{R} + \cdots$	
u	$+\frac{2}{3}$		$\frac{1}{3}$	0	value × fuel flow rate	$ \begin{array}{cccc} R_{\rm T} & R_1 & R_2 & R_3 \\ R_{\rm T} = R_1 + R_2 + R_3 + \cdots \end{array} $	
d	$-\frac{1}{3}$	+	$\frac{1}{3}$	0			
s	$-\frac{1}{3}$	+	$\frac{1}{3}$	-1	indicated power as (area of $p - V$ loop) × (no. of cycles/s) ×	$P = I^2 R$	
1	-				(no. of cylinders)	$E = \frac{F}{Q} = \frac{V}{d}$	
Geometric	al equations					$\int_{0}^{\infty} Q^{-d} d$	
					friction power = indicated	$_{r}$ 1 $_{Q}$	
$arc\ length = r\theta$					power – brake power	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$	
circumference of circle = $2\pi r$					W = O = O		
area of circle = πr^2					$efficiency = \frac{W}{O_{in}} = \frac{Q_{in} - Q_{out}}{O_{in}}$	$E = \frac{1}{2} QV$	
area of cylinder = $2\pi rh$					~m £m	F = BIl	
volume of cylinder = $\pi r^2 h$					maximum possible	F = BQv	
area of sphere = $4\pi r^2$					$efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$	$Q = Q_0 e^{-t/RC}$	
volume of sphere = $\frac{4}{3}\pi r^3$					$= \frac{T_{\rm H}}{T_{\rm H}}$	$\Phi = RA$	
						Turn over	

magnitude of induced emf $= N \frac{\Delta \Phi}{\Delta t}$

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$

Mechanical and Thermal Properties

the Young modulus =
$$\frac{\text{tensile stress}}{\text{tensile strain}} = \frac{F}{A} \frac{l}{e}$$

energy stored = $\frac{1}{2}$ Fe

$$\Delta Q = mc \ \Delta \theta$$

$$\Delta Q = ml$$

$$pV = \frac{1}{3} Nm\overline{c^2}$$

$$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$$

Nuclear Physics and Turning Points in Physics

$$force = \frac{eV_p}{d}$$

force = Bev

radius of curvature = $\frac{mv}{Be}$

$$\frac{eV}{d} = mg$$

 $work\ done = eV$

 $F=6\pi\eta rv$

$$I = k \frac{I_0}{r^2}$$

$$\frac{\Delta N}{\Delta t} = -\lambda N$$

$$\lambda = \frac{h}{\sqrt{2meV}}$$

$$N = N_0 e^{-\lambda t}$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

$$R = r_0 A^{\frac{1}{3}}$$

$$E = mc^2 = \frac{m_0 c^2}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

$$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$

$$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

Astrophysics and Medical Physics

Body	Mass/kg	Mean radius/m
Sun	2.00×10^{30}	7.00×10^{8}
Earth	6.00×10^{24}	6.40×10^{6}

1 astronomical unit = 1.50×10^{11} m

1 parsec =
$$206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$$

1 light year = 9.45×10^{15} m

Hubble constant $(H) = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $M = \frac{\text{angle subtended by image at eye}}{\text{angle subtended by object at}}$

$$M = \frac{f_0}{f_e}$$

$$m - M = 5 \log \frac{d}{10}$$

 $\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$

$$v = Hd$$

$$P=\sigma AT^4$$

$$\frac{\Delta f}{f} = \frac{\nu}{c}$$

$$\frac{\Delta\lambda}{\lambda} = -\frac{\nu}{c}$$

$$R_{\rm s} \approx \frac{2GM}{c^2}$$

Medical Physics

$$power = \frac{1}{f}$$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$$

intensity level =
$$10 \log \frac{I}{I_0}$$

$$I = I_0 e^{-\mu}$$

$$\mu_{\rm m} = \frac{\mu}{\alpha}$$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi fC}$$

Alternating Currents

$$f = \frac{1}{T}$$

Operational amplifier

$$G = \frac{V_{\text{out}}}{V_{\text{in}}}$$
 voltage gain

$$G = -\frac{R_{\rm f}}{R_{\rm 1}}$$
 inverting

$$G = 1 + \frac{R_{\rm f}}{R_{\rm 1}}$$
 non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right) \text{ summing}$$