Newton's Laws II ## $A.C.\ Norman\\$ anorman@bishopheber.cheshire.sch.uk ## April 5, 2011 Take $g = 10 \text{ m s}^{-1}$, and the density of air = 1.3 kg m⁻³. - 1. Water is squirting horizontally at 4.0 m s⁻¹ from a burst pipe at a rate of 3.0 kg m s⁻¹. The water strikes a vertical wall at right angles and runs down it without rebounding. Calculate the force the water exerts on the wall. - 2. A machine gun fires 300 bullets per minute horizontally with a velocity of 500 m s⁻¹. Find the force needed to prevent the gun moving backwards if the mass of each bullet is 8.0×10^{-3} kg. - 3. Coal is falling onto a conveyor belt at a rate of 540 tonnes per hour. The belt is moving horizontally at 2.0 m s^{-1} . Find the extra force required to maintain the speed of the belt. - 4. The rotating blades of a hovering helicopter sweep out an area of radius 4.0 m imparting a downward velocity of 12 m s^{-1} to the air displaced. Find the mass of the helicopter. - 5. Find the force exerted on each square metre of a wall which is right angles to a wind blowing at 20 m s^{-1} . Assume that the air does not rebound. - 6. Hailstones with an average mass of 4.0 g fall vertically and strike a flat roof at 12 m s⁻¹. In a period of 5.0 minutes, six thousand hailstones fall on each square metre of roof and rebound vertically at 3.0 m s⁻¹. Calculate the force on the roof if it has an area of 30 m². - 7. The speed of rotation of the blades of the helicopter in question 4 is increased so that the air now has a downward velocity of 13 m s^{-1} . Find the upwards acceleration of the helicopter.