Newton's Laws I

A.C. NORMAN anorman@bishopheber.cheshire.sch.uk

March 21, 2011

Take $g = 10 \text{ m s}^{-1}$ when necessary.

- 1. State, in words and symbols, Newton's second law.
- 2. The resultant force on a body of mass 4.0 kg is 20 N. What is the acceleration of the body?
- 3. A body of mass 6.0 kg moves under the influence of two oppositely directed forces whose magnitudes are 60 N and 18 N. Find the magnitude and direction of the acceleration.
- 4. Two forces, 30 N and 40 N, are perpendicular to each other. Find the acceleration of a body of mass 25 kg when these forces act on it.
- 5. A body of mass 3.0 kg slides down a plane inclined at 30° to the horizontal. Find the acceleration of the body
 - (a) if the plane is smooth,
 - (b) if there is a constant frictional resistance of 9.0 N.
- 6. An ice hockey puck of mass $0.75~\rm kg$ is struck and moves with an initial velocity of $24~\rm m~s^{-1}$ across the surface of a frozen lake. It travels 190 m before coming to rest. Calculate
 - (a) the average deceleration of the puck,
 - (b) the average frictional force on the puck.
- 7. An eccentric fisherman weighs a 4 kg sea bass in the lift of a tall building, using a weighing machine (a hook and spring). Calculate the indicated weight when the lift is
 - (a) stationary,
 - (b) accelerating upwards at 2.5 m s^{-2} ,
 - (c) accelerating downwards at 3.0 m s⁻²,
 - (d) moving upwards with a constant velocity of 4.0 m s^{-1} .
- 8. A hot air balloon with its basket and passengers has a mass of 1150 kg. When stationary in still air, 100 kg of ballast is thrown out. Calculate
 - (a) the resultant force on the balloon,
 - (b) the initial acceleration of the balloon.