Required formulas for IGCSE Physics (not given)

$A.C.\ Norman \\$ ACN.Norman@radley.org.uk

1. the relationship between average speed, distance and time:

average speed =
$$\frac{\text{distance}}{\text{time}}$$

2. the relationship between average force, mass and acceleration:

 $force = mass \times acceleration$

$$\operatorname{acceleration} = \frac{\operatorname{change\ in\ velocity}}{\operatorname{time}}$$

3. the relationship between average density, mass and volume:

$$density = \frac{mass}{volume}$$

4. the relationship between force, distance and work:

 $work = force \times distance moved$

5. the energy relationships:

energy transferred = work done kinetic energy =
$$\frac{1}{2} \times \text{mass} \times \text{speed}^2$$

gravitational energy = $mass \times g \times height$

6. the relationship between mass, weight and gravitational field strength:

weight = mass \times gravitational field strength

7. the relationship between an applied force, the area over which it acts and the resulting pressure:

$$pressure = \frac{force}{area}$$

8. the relationship between the moment of a force and its distance from the pivot: $moment = force \times perpendicular from the pivot$

9. the relationships between charge, current, voltage, resistance and electrical power:

$$\mathrm{charge} = \mathrm{current} \times \mathrm{time}$$

electrical power = voltage \times current

10. the relationship between speed, frequency and wavelength:

wave speed = frequency \times wavelength

11. the relationship between refractive index, angle of incidence and angle of refraction:

$$n = \frac{\sin i}{\sin r}$$

12. the relationship between refractive index and critical angle:

$$\sin c = \frac{1}{n}$$

13. the relationship for pressure difference:

pressure difference = height × density ×
$$g$$

 $p = h \times \rho \times g$

