On mains electricity

A.C. NORMAN

anorman@bishopheber.cheshire.sch.uk

Warm-up problems

- 1. Draw a labelled diagram of a plug. Make sure you include the materials used and the colours of the three wires.
- 2. 'Mains electricity is at 230 V a.c., 50 Hz in the UK.' Explain this statement as fully as you can.
- 3. What is the difference between alternating current (a.c.) and direct current (d.c.)?

Regular problems

- 4. Electrical fires have metal cases and three wires connected to the plug. Two of the wires are the live and the neutral.
 - (a) What is the third wire called?
 - (b) To what part of the electric fire should this be connected?
 - (c) If a fault develops, explain how this protects the user from a shock.
- 5. (a) What is the purpose of the fuse in a plug?
 - (b) What happens to the fuse when too much current flows through it? (Avoid using the word blows)
 - (c) How is the rating of the fuse decided?
 - (d) To which pin of the plug is fuse connected? Why is this?
 - (e) How would the thickness of a wire in a 13 A fuse compare to that in a 3 A fuse?
- 6. A hairdryer usually has a moulded plastic casing.
 - (a) The hairdryer has only two wires. Which two?
 - (b) Which of the usual wires is missing?
 - (c) It is still safe without this third wire? Explain why.
- 7. (a) Find out an advantage of using a Residual Current Circuit Breaker (RCCB) rather than a fuse to protect the user of an electrical appliance.
 - (b) 'RCCBs operate by detecting a difference between the live and the neutral wires'. Find out how the devices do this, and explain in detail what happens when a surge of current flows.

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/