Distance—time graphs

A.C. NORMAN Bishop Heber High School

Here is the data we collected on 26 September:

distance / m	time / s	-	distance / m	time / s
0	21.19	-	32	47.34
2	22.10		34	48.13
4	22.50		36	49.03
6	23.59		38	49.24
8	24.37		40	49.40
10	24.94		42	49.72
12	26.03		44	50.40
14	27.38		46	50.38
16	28.87		48	50.51
18	30.10		50	51.09
20	31.31		52	51.16
22	32.44		54	51.81
24	34.25		56	51.85
26	45.03		58	51.88
28	45.93		60	52.40
30	46.88	_	62	52.69

You should use it to plot a distance-time graph, which ought to look like this:

Your homework is to

- finish plotting your graph and stick it into your book,
- listen to the two 'Naked Scientists' podcasts on E:HEBER, and
- answer the questions below.

Questions

- 1. Describe the bicycle's motion as accurately as possible in a few short sentences.
- 2. What was its average speed over the whole distance?
- 3. What happened between 35 s and 45 s?
- 4. What was the speed between 25 s and 35 s?
- 5. What was going on after 45 s?