PARALLAX A couple of examples

A.C. NORMAN

Bishop Heber High School

15 November 2010

Syllabus Requirement

understand that distance to stars can be measured using the relative brightness of stars or parallax (qualitative idea only)

[OCR Science A 21st Century Science Suite, Sept 2009]

Problem 1

The baseline used in measuring parallaxes of nearby stars is the diameter of the earth's orbit (2 ${\rm AU}=300~000~000~km$). If the parallax angle measured is 0.00015° , how far away is the star?

$$L = 300\ 000\ 000\ \text{km}$$
 $\theta = 0.00015^{\circ}$
Star

Earth

$$R=rac{360^{\circ}}{ heta^{\circ}}rac{L}{2\pi}$$

Problem 2

Proxima Centauri is the nearest star to us (after the Sun). It is 4.24 light years away.

What would we measure its parallax angle to be?

Earth

$$\theta^{\circ} = 360^{\circ} \times \frac{L}{2\pi R}$$

A light year is the distance which light, moving at $300\ 000\ km/s$, covers in a year. The sun is eight light minutes away, Pluto about 5 light hours.