
Random Variables: Cheat Sheet

393 400 379 394 393 411 418 405 415 419
(experiment by A.C. Norman, 10–x–2006)

We could imagine an infinite set of such results, from which each measure-
ment result xi above has been randomly selected. Each single measurement
returns a value xi of the random variable x, which has a probability distri-
bution p (x) (in this case number of counts from a γ source in 0.1 s, but it
could be anything we want to measure in physics).
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Mean of n measurements of x
If n measurements of x have been made, the best estimate of the ‘true’

value of x is the mean of these, x (see µ above). This is also the expected
value of a single measurement of x, and the expected value of the mean of a
set of measurements.
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Quoting experimental results
The result of a set of measurements is quoted as x ± σm. In graphical

work, error bars normally run from x− σm to x+ σm
e.g. R = 4.625± 0.007 Ω.
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Range method
The standard method of estimating σ and σm is via the standard deviation

of the sample. However, if no calculating aids are used, this can be tedious.
The range method is particularly simple, almost as reliable as the standard
method, and for values of n up to about 12, is quite adequate for most
purposes.

If r is the difference between the highest and lowest of n readings, an
estimate of σ is given by

σ ≈ r√
n
,

and since σm = σ√
n
,

σm ≈
r

n
.

NB This doesn’t imply that σm is proportional to 1/n, since r ∝
√
n.

For values of n greater than 12, the range method becomes increasingly
unreliable, tending to underestimate σ.

Chebyshev’s inequality and the Central Limit Theorem
Chebyshev’s inequality tells us that x is unlikely to differ from µ, the true

value, by more than a few multiples of σm = σ/
√
n. This means that x is an

increasingly good estimate of µ as n increases (but since σm only decreases
as 1/

√
n, it becomes increasingly unprofitable to keep taking readings of the

same quantity – better to reduce σm by reducing σ, i.e. by taking a more
precise set of readings).

The Central Limit Theorem states that whatever the form of p(x) (the
probability distribution of x) with expected value µ and variance σ2, the
probability distribution of x will tend towards a normal or gaussian distri-
bution with mean µ and standard deviation σ√

n
as n becomes large. We can

therefore model the result of any measurement statistically as being normally
distributed:
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% of xi Approximate fraction
n within ±nσ of readings outide nσ
0 0% 1 out of 1
1 68.3% 3
2 95.4% 20
3 99.73% 400
4 99.994% 16 000

For a set of readings with mean x, about two-thirds of the individual readings
should lie within x± σ.
For a result quoted as x± σm, the probability that the true value lies in the
quoted range is roughly two-thirds.
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