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1 Errors, and how to make them

Every dog has its day, every silver lining has its cloud, and every measure-
ment has its error.!

If you doubt this, take (sorry — borrow with permission) a school metre
stick, and try and measure the length of a corridor in your school. Try and
measure it to the nearest centimetre. Then measure it again. Unless you
cheated by choosing a short corridor, you should find that the measurements
are different. What’s gone wrong?

Nothing has gone wrong. No measurement is exact, and if you take a
series of readings, you will find that they cluster around the ‘true value’.
This spread of readings is called random error and will be determined by
the instrument you use and the observation technique. To be more precise
and polite, this kind of ‘error’ is usually called uncertainty, as this word
doesn’t imply any mistake or incompetence on the part of the scientist.

So, whenever you write down a measurement, you should also write down
its uncertainty. This can be expressed in two ways — absolute and relative.

The absolute uncertainty gives the size of the spread of readings. You
might conclude that your corridor was (12.3 £ 0.2) m long. In other words,
your measurements are usually within 20 cm of 12.3 m. In this case the
absolute uncertainty is 20 cm.

The absolute uncertainty only gives part of the story. A 10 cm error
in the length of a curtain track implies sloppy work. A 10 cm error in the
total length of the M1 motorway is an impressive measurement. To make
this clearer, we often state errors (or uncertainties) in percentage form — and
this is called relative uncertainty. The relative uncertainty in the length of
the corridor is

Abs. Uncertainty 0.2 m

Measurement 12.3 m % %

Relative Error =

Notice the rounding off at the end. It is usually pointless to give uncer-
tainties to more than one significant figure.

! A mathematician would probably be appalled at some of the statements I make. The
study of errors and uncertainties is embedded in statistics, which is a well-established dis-
cipline. There are many refinements to the results I quote which are needed to satisfy the
rigour of a professional statistician. However, the thing about uncertainties in measure-
ments is that quoting them to more than one significant figure is missing the point, and
therefore our methods only need to be accurate to this degree. If you are doing statistics
and you want to take things more seriously, then you will understand (2) from the addition
of variances; and you will realise that in 8.2.1 we really ought to be adding variances not
errors. You will also appreciate that (2) ought to have an (n — 1) in the denominator to
take into account the difference between population and sample statistics, and that our
section 8.2.2 is a form of the Binomial theorem to first order.



Every measurement has its uncertainty, and the only way of determining
this is to take more than one measurement, and work out the standard
deviation — to measure the spread. In practice the spread can be ‘eyeballed’
rather than calculated. If the measurements were 54.5 cm, 54.7 cm and
54.3 c¢m, then there is no need to use a calculator and the technical definition
of deviation. The observation that the spread is about £0.2 cm is perfectly
good enough.

Notice that the more readings you take, the better idea you get of the
spread of the measurements — and hence the better estimate you can make
for the middle, which is indicative of ‘true’ value. Therefore we find, from
statistics, that if you take n measurements, and the absolute uncertainty is x,
then the uncertainty of the mean of those measurements is approximately:?

. T
Uncertainty of mean = T

Therefore, the more measurements you take, the more accurate the work.
Notice that if you wish to halve the uncertainty, you need to take four times
as many readings. This is subject to one proviso:

Measurements also have a resolution. This is the smallest distinguishable
difference that the measuring device (including the technique) can detect.
For a simple length measurement with a metre ruler, the resolution is prob-
ably 1 mm. However if, by years of practice with a magnifying lens, you
could divide millimetres into tenths by eye, you would have a resolution of
0.1 mm using the same metre stick. That is why we say that the resolution
depends on the technique as well as on the apparatus.

The uncertainty of a measurement can never be less than the resolution.
This is the proviso we mentioned. Why should this be the case? Let us have
a parable.

Many years ago, the great nation of China had an emperor.
The masses of the population were not permitted to see him.
One day, a citizen had the sudden desire to know the length of
the emperor’s nose. He could not do this directly, since he was
not permitted to visit the emperor. So, using the apparatus of
the imperial administration, he asked all the regional mandarins
to ask the entire population to make a guess. Each person would
make some guess at the imperial nasal length — and the error of
each guess would probably be no more than £2 cm — since nose
lengths tend not to vary by more than about 4 cm.

However, the mean would be a different matter. Averaged
over the 1000 million measurements, the error in the mean would
be 0.7 pm. So the emperor’s nose had been measured incredibly
accurately — without a single observation having been made!

The moral of the story: uncertainties are reduced by repeated mea-
surement, but the error can never be reduced below the resolution of the
technique—here 2 cmm—since ignorance can not be circumvented by pooling
it with more ignorance.

2This result will be proved in any statistics textbook. To give a brief justification —
the more readings you take, the more likely you are to have some high readings cancelling
out some low readings when you take the average.



2 Errors, and how to make them worse

Errors are one thing. The trouble is that usually we want to put our mea-
surements into a formula to calculate something else. For example, we might
want to measure the strength of a magnetic field by measuring the force on
a current-carrying wire B = %

If there is a 7% uncertainty in the current, 2% in the force and 1% in
the length — what is the uncertainty in the magnetic field?

There are two rules you need:

2.1 Rule 1 Adding or subtracting measurements

If two measurements are added or subtracted, the absolute uncertainty in
the result equals the sum (never the difference) of the absolute uncertainties
of the individual measurements.

Therefore if a car is (3.24£0.1) m long, and a caravan is (5.240.2) m long,
the total length is (8.4+0.3) m long. Similarly if the height of a two-storey
house is (8.34£0.2) m and the height of the ground floor is (3.1+0.1) m, the
height of the upper floor is (5.2+0.3) m.

Even in the second case, we do not subtract the uncertainties, since there
is nothing stopping one measurements being high, while the other is low.3

2.2 Rule 2 Multiplying or dividing measurements

If two measurements are multiplied or divided, the relative uncertainty in
the result equals the sum (never the difference) of the relative uncertainties
of the individual measurements.

Therefore if the speed of a car is 30 mph+10%, and the time for a journey
is 6 hours+2%, the uncertainty in the distance travelled is 12%.

Notice that one consequence of this is that if a measurement, with rel-
ative uncertainty p% is squared (multiplied by itself), the relative error in
the square is 2p%, i.e. doubled. Similarly if the error in measurement L is
p%, the error in L™ is p x n%. Notice that while a square root will halve
the relative error, an inverse square (n = 2) doubles it. All the minus sign
does is to turn overestimates into underestimates. It does not reduce the
magnitude of the relative error.?

Now we can answer our question about the magnetic field measurement
at the beginning of the section. All three relative errors (in length, force
and current) must be added to give the relative error in the magnetic field,
which is therefore 10%.

30f course, there is a good chance that the errors will partly cancel out, and so our
method of estimating the overall error is pessimistic. Nevertheless, this kind of error
analysis is good enough for most experiments — after all it is better to overestimate your
errors. If you want to do more careful analysis, then you work on the principle that if
the absolute uncertainties in a set of measurements are A, B, C..., then the absolute
uncertainty in the sum (or in any of the differences) is given by /A2 + B2 4+ ¢2.... This
result comes from statistics, where we find that the variance (the square of the standard
deviation) of a sum is equal to the sum of the variances of the two measurements.

4The conclusions of this paragraph can be justified using calculus. If measurement x
has absolute uncertainty dz, and y (a function of z) is given by y = Az", then we find
that the relative error in y is given by:

%y ~ dy oz = (Anmnil) oz yow ox
Y dx y y Ty T

that is n multiplied by the relative error in x.



3 Systematic Errors

All the ‘errors’ mentioned so far are called ‘random’, since we assume that
the measurements will be clustered around the true value. However often
an oversight in our technique will cause a measurement to be overestimated
more often than underestimated or vice-versa. This kind of error is called
‘systematic error’, and can’t be reduced by averaging readings. The only
way of spotting this kind of error (which is a true error in that there is
something wrong with the measurement) is to repeat the measurement using
a completely different technique, and compare the results. Just thinking
hard about the method can help you spot some systematic errors, but it is
still a good idea to perform the experiment a different way if time allows.

4 Which Graph?

You will often have to use graphs to check the functional form of relation-
ships. You may also have to make measurements using the graph. In order
to do either of these, you usually need to manipulate the data until you can
plot a straight line. A straight line is conclusive proof that you have got the
form of the formula right!

The gradient and y-intercept can then be read, and these enable other
measurements to be made. For example, your aim may be to measure the
acceleration due to gravity. You may plot velocity of falling against time, in
which case you will need to find the gradient of the line.

At its most general, you will have a suspected functional form y = f(z),
and you will need to work out what is going on in the function f. Notice
that our experiment will give us pairs of (x,y) values — what is not known
are the parameters in the function f. We find them by manipulating the
equation:

y = f(x)

g(z,y) = Ah(z,y) + B

We can then plot g(z,y) against h(z,y), and obtain the parameters A
and B from the gradient and intercept of the line. Furthermore, the presence
of the straight line on the graph assures us that our function f was a good
guess. We shall now look at the most common examples.

4.1 Exponential growth or decay

Here we have the functional form y = AeB*, where A and B need to be
determined. We manipulate the equation:

y:AeBz
Iny=InA+ Bz

So we plot (Iny) on the vertical axis, and = on the horizontal. The
y-intercept gives In A, and the gradient gives B.



4.2 Logarithmic growth or decay

Here we have the functional form y = A+ Blnz, and again we need to work
out the values of A and B. This equation is already in linear form — we plot
y on the vertical, and (Inz) on the horizontal. The y-intercept gives A, and
the gradient gives B.

4.3 Power laws

This covers all equations with unknown powers: manipulation involves log-
arithms:

y = AzP
Iny =InA+Inz?
Iny=InA+ Blnz

Here we plot (Iny) against (Inx), and find the power B as the gradient of
the line. The A value can be inferred from the y-intercept, which is equal
to In A.

4.4 Other forms

Even hideous looking equations can be reduced to straight lines if you crack
the whip hard enough. How about y = Ay/x 4+ Bz3? Is it tasty enough for
your breakfast? Actually it’s fine if digested slowly:

y = AVz + Ba?
Y 5
— = A+ Bzx>2
NI

This looks even worse, doesn’t it? But remember that it is x and y that
are known. If we plot (y/y/z) on the vertical, and (z2) on the horizontal,
a straight line appears, and we can read A and B from the y-intercept and
gradient respectively.



