THE SIMPLE PEMDULUM

The period, T_0 , of a simple pendulum of length L, for small angles of oscillation, is given by

$$T_0^2 = 4\pi^2 (L/g),$$

where g is the acceleration of free fall under gravity.

In this experiment use a pendulum with L approximately 30 cm.

- 1. Determine g using a simple pendulum, and the formula above, when the amplitude of the swing is 4^0 . Estimate the uncertainty of the result.
- 2. Determine the variation of the period, T, of the pendulum with its angular amplitude, θ , for values of θ up to 90^{0} . Estimate the uncertainty of each result. Plot a graph of T against θ .
- 3. Draw a graph of T against $sin^2(\theta/2)$. Determine the gradient and intercept of the linear portion of the graph.
- 4. Now draw a graph of

$$[(T/T_0)-1]$$
 $[\sin^2(\theta/2)]^{-1}$ against $\sin^2(\theta/2)$

Determine the gradient and intercept of the linear portion of graph.

5. Suggest a formula for the variation of T with θ based on the results obtained in 4.